
Cut Me Some Security!

Divya Muthukumaran
The Pennsylvania State

University
SIIS Laboratory

CSE Department
University Park, PA, USA

muthukum@cse.psu.edu

Sandra Rueda
The Pennsylvania State

University
SIIS Laboratory

CSE Department
University Park, PA, USA

ruedarod@cse.psu.edu

Hayawardh Vijayakumar
The Pennsylvania State

University
SIIS Laboratory

CSE Department
University Park, PA, USA

huv101@psu.edu
Trent Jaeger

The Pennsylvania State
University

SIIS Laboratory
CSE Department

University Park, PA, USA
tjaeger@cse.psu.edu

ABSTRACT
Computer security is currently fraught with fine-grained ac-
cess control policies, in operating systems, applications and
even programming languages. All this policy configuration
means that too many decisions are left to administrators,
developers and even users to some extent and as a result we
do not get any comprehensive security guarantees. In this
position paper, we take a stand for the idea that less pol-
icy is better and propose that limiting the choices given to
parties along the development and deployment process leads
to a more secure system. We argue that other systems pro-
cesses like scheduling and memory management achieve their
goals with minimal user input and access control configura-
tion should also follow suit. We then suggest a technique to
automate access control configuration using graph-cuts and
show that this gets us closer to achieving our goal.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, Information flow controls

General Terms
Security

1. INTRODUCTION
Unlike most system mechanisms, computer security re-

quires a tremendous amount of manual specification. From
configuration files to access control policies to program in-
put sanitization, the system administrators, OS distributors,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

application developers, and even users, in some (unfortu-
nate) cases, have to make security decisions. This contrasts
markedly with other systems mechanisms, such as schedul-
ing, memory management, and I/O, where the system makes
all the necessary decisions for the users with little or no in-
put. We claim that until security becomes (near) “policy-
less,” security mechanisms will not be effective at thwarting
attackers.

Typically, when a new component (system or program)
is introduced, it is delivered with an initial security mech-
anism, often aimed at protection from faults (e.g., discre-
tionary access control for operating systems and same-origin
policy for browsers) rather than security against determined
attackers. The policy models for these initial mechanisms
are often simple to use, but these components are not secure.
As a result, attackers and security researchers identify secu-
rity flaws. Security practitioners then resort to deploying
fine-grained enforcement mechanisms with associated fine-
grained policies (e.g., SELinux for operating systems [19]
and Chrome browser [3]).

The question in this paper is whether we can develop a
fundamental approach that can eliminate the need for fine-
grained policy specification. That is, can we identify a prob-
lem whose solution results in secure functionality with little
or no guidance, as is the case in memory management? Or
can we solve such a problem from a small number of rel-
atively simple and verifiable decisions from expert parties,
as in processor scheduling? With such a problem, we may
be able to move away from the vicious cycle of finer-grained
policy enforcement into a “policy-less” future.

So how do we enable programs to make correct security
decisions without using fine-grained policies? In this posi-
tion paper, we aim to create a model that parallels CPU
scheduling as a guide to understand how to design future
security mechanisms and the challenges that we face. CPU
scheduling is an operating system mechanism that deter-
mines which process to run next, with the aim of achieving
fairness. While it is an NP-complete problem in general, it is
solved acceptably using a greedy algorithm with default pri-
ority inputs by observing process execution. Access control

75

policy configuration is a similarly complex problem, with
its need to balance function and security requirements, but
we have not seen access control studied in the same way as
scheduling, i.e., as an algorithm design problem. To study
this question, we examine access control configuration as a
graph-cut problem: an effective solution mediates all illegal
information flows, which is equivalent to finding an appro-
priate cut in an information flow graph. We find potential
in automating access control, but there are also some signif-
icant challenges. We hope that this paper motivates people
to explore the option of automating access control configu-
ration.

This paper is organized as follows. We examine how we
created this policy management problem in Section 2. We
then outline the position we take in this paper and sketch
out a solution to the problem in Section 3. We propose a
graph-cut approach for deploying systems in Section 4, and
in Section 5, we assess the challenges in implementing that
approach.

2. THE VICIOUS CYCLE OF POLICY
In this section, we describe why adding more policy is not

an effective way to manage security.

2.1 Deploying Reference Monitors
Ten years ago, conventional operating systems distribu-

tors were finally convinced that discretionary access con-
trol was insufficient to protect a system from determined
attackers. The operating systems security community had
long known about the virtues of the reference monitor con-
cept [5], an unbypassable reference validation mechanism
that enforces a mandatory access control (MAC) policy. As
a result, a reference validation mechanisms were added to
Linux, FreeBSD, and ported to Mac OS X.

It was soon determined that security mechanisms in the
OS alone were insufficient. Important access control deci-
sions were also being made in user-space programs, such as
the X window server [22], so access control mechanisms were
added to these programs. Also, ad hoc access control mech-
anisms in browsers were being replaced with comprehensive
reference monitors [3]. Concurrently, a number of indepen-
dent movements had also been ongoing that added compre-
hensive access control to programming language runtimes,
such as Java [12] and security-typed languages [17].

2.2 Making Access Control Decisions
Access control mechanisms enforce access control policies,

and the major problem is now the need to express and man-
age all these policies. While UNIX discretionary access con-
trol model was never sufficient to express policies that would
thwart determined attackers, the model is one that users
and system administrators seem to understand. Information
flow security models, such as Bell-LaPadula [7] and Biba in-
tegrity [8], are also logical for users, but while these models
do provide strong guarantees against attackers, they fail to
express the functional requirements of conventional systems.
As a result, flexible access control models were adopted in
many cases, such as Type Enforcement [9] by SELinux [19]
and DTE [21]. We saw a similar evolution that led to fine-
grained access control models for Java [12], Windows [20],
and applications (browsers [3]), even where strong security
guarantees are not enforced.

From our experience and that of others [1, 2, 4], we have
learned that people find it hard to use these fine-grained
policy models effectively to deploy secure systems. While
SELinux can express a comprehensive, mandatory policy,
people cannot use it effectively. SELinux policies released
with Linux distributions enforce a targeted policy, where
only network-facing daemons are confined (i.e., those that
do not need to be fully trusted [10]), but other local pro-
cesses are unconfined. This approach was derived from the
AppArmor model [18], which focuses on a usable approach
to prevent network attacks. The result is that the deploy-
ment of these approaches does not achieve strong security
guarantees. This is also a similar case for Windows Manda-
tory Integrity Control model, which enforces Biba integrity,
but only for writes, resulting in an incomplete model.

Our take away is that if people are given the flexibil-
ity to choose among function, usability, and security, they
will choose the former two every time. Wurster and Van
Oorschot discuss this problem in the context of application
developers [23], proposing that developers only be given de-
velopment choices that lead to a secure program. That
is, developers, OS distributors, and system administrators
should be given a small, coherent set of choices that enable
them to provide their function in a secure manner.

But, it is not clear that we are converging on this goal. A
recent proposal is an even more powerful model, Decentral-
ized Information Flow Control [15, 25] (DIFC). This model
is an information flow model based on the Decentralized La-
bel Model [16, 11], which enables strong security guarantees
(modulo management of delegated rights) while permitting
function not authorized in classical models (e.g., controlled
declassification of secrets and endorsement of low-integrity
data). To achieve this, the DIFC model is even more ex-
pressive than previous models, representing each security
requirement in the form of a tag and constructing labels
from sets of tags. Thus, while we may be converging on
what we need to express, we are not converging on how this
can possibly be expressed and maintained. A completely
new approach to managing security is necessary.

3. HOW CAN WE SIMPLIFY MANUAL EF-
FORT?

We feel that we need to take a cue from existing operat-
ing systems mechanisms, in particular CPU scheduling, to
solve the access control configuration problem. The CPU
scheduling mechanism has the following stages:

• First, it models the scheduling state of all processes,
such as a set of queues in a multi-queue scheduler.

• The CPU scheduler then inputs high-level configura-
tion parameters, such as priorities, and runtime pro-
cess behavior, such as time slices, to construct an in-
stance of the model for that system.

• The scheduler solves the scheduling problem by choos-
ing the next process to schedule and by updating the
model instance.

• Finally, the CPU scheduler enacts the scheduling de-
cision by scheduling the selected process and updating
queues.

We envision that a system mechanism to configure ac-
cess control would have to implement each of these steps.

76

We need to model the function of processes, gather system-
specific inputs regarding access, measure the system as it
runs, solve the problem of determining what accesses should
be allowed, and enact those access decisions. To study op-
tions for solving the access control configuration problem,
we examine it as a graph-cut problem. We recently modeled
the problem of placing mediation statements (e.g., declassi-
fiers and runtime checks) in legacy code [14] as a graph-cut
problem. We found that configuring access control in gen-
eral is the problem of finding the “right” cut in the graph to
block attackers while at the same time permitting necessary
function. Our study shows that there are both benefits and
challenges in approaching access control configuration as a
graph cut problem.

In this discussion, we envision a graph-cut configuration
mechanism could work as follows. First, default function of
the system (in terms of interaction between processes) would
be shown as an information flow graph. As a community,
we have a pretty good idea how processes interact, so we
believe that such a graph could be collected from runtime
experience. It need not be a perfect representation of sys-
tem function, as a mechanism must be robust to changes.
Second, the security requirements of the data added to the
system would be specified as imports and exports. Third,
we compute a graph-cut that mediates all illegal accesses
while preserving necessary function. Mediation may occur
through a variety of means, including the blocking of flows,
runtime mediation of flows (e.g., sanitization), etc. Thus,
the choice of how to enact the cut is left open. We envision
that a set of possible options will be collected over time to
enable function while protecting the system from security
risks, which the cut aims to mitigate.

4. WHY GRAPH-CUTS?
In graph theory, given a graph G=(V,E), a vertex cut of

this graph with respect to a source and a sink is a set of
vertices whose removal will divide the graph into two parts,
one containing the source and the other containing the sink,
such that the sink can no longer be reached from the source.
In mediation placement our goal is to find points in the pro-
gram where mediators such as declassifiers and endorsers can
be placed to prevent illegal information flows. We showed
in previous work [14] that this was tantamount to obtaining
a vertex cut of the information flow graph of the program
with respect to the offending sources and sinks of informa-
tion. We developed a tool to convert source code of pro-
grams into information flow graphs, generate a vertex cut
of that graph and return the corresponding expressions as
complete and minimal positions for placing mediation state-
ments such that all illegal information flows in the system
with eliminated. Our tool currently works on both C and
Java programs and cuts can be generated for 20K SLOC
programs in less than 90 seconds, and selected placements
correspond to manual placements 80% of the time. The
graph-cut tool can be applied to any problem that can be
represented as an information flow graph.

We identified four basic steps to creating and solving a
graph-cut problem.

1. Building a model: We need to build an information
flow graph of the entire system showing the interac-
tion between different processes. For individual pro-
grams, we can build the information flow graph from

a static analysis of the source code. For system wide
information flows we need to monitor the system usage
to gather flows and any auditing utility can help with
this. For example, we can use a utility like SELinux
audit2allow which reads logs to identify accesses that
were denied by the policy in order to build a policy
that allows necessary functionality.

2. Gathering inputs: Imports and Exports are used to
mark security sensitive data that enter and leave the
system respectively and represent the sources and sinks
in the graph-cut problem. Users need to specify what
the security requirements of imports are with respect to
exports, for example, imports labeled password should
not reach exports labeled public without declassifica-
tion. Initially, imports and exports need to be specified
just like scheduling priorities, but over time they may
become well-known. For example, it is well known that
web-servers receive untrusted input.

3. Solving the problem: We compute a vertex-cut of the
information flow graph with the imports as sources and
exports as sinks. This solution provides completeness
by construction (i.e., the cuts suggested cover all illegal
flows in the program). Generating a min-cut will also
guarantee a minimal solution.

4. Enacting the cut: Once we have the cut, we need to
build a security solution that resolves the security error
as per the security requirement. Typically, we would
need to make programs declassifiers or endorsers by
changing the source code. For this, we envision having
a template of filters to choose from. For example, for
imports labeled password that need to be kept secret,
the tool can automatically pick an encryption func-
tion from the template to insert at the cut location.
Whenever new security requirements are added, corre-
sponding filters are added to the template library.

5. CUT-PROBLEM CHALLENGES
The following challenges must be addressed to generate

access enforcement from graph-cuts.

• Sources and sinks: Ensure that all the security-
sensitive sources and sinks are identified with little
programmer input.

• Cut-conjunction: There may be multiple cut prob-
lems to solve per component, so we need to merge the
solutions.

• Mediators: Collect and evaluate the cost of cut op-
tions to determine the weights for options.

First, while people can probably identify the key exter-
nal sources for their programs and systems, we may also
need to identify sources and sinks within the program. For
example, the Saner project identified that untrusted inputs
may need to be sanitized multiple times for different pur-
poses [6], so we need to automate the finding of sinks with
different requirements within a program. Second, the graph-
cut problem where there are multiple sources and sinks is
called the cut-conjunction problem, and this problem has
unknown computational complexity [13]. We have devel-
oped a simple greedy algorithms, but more exploration is

77

necessary. Third, as described above, a library of media-
tors will be necessary to automate sanitization, raising two
problems: (1) how to apply sanitization methods automat-
ically and (2) how to evaluate the cost of such methods for
computing cuts. The Saner system shows one method to
model known sanitizers [6], and we envision that costs may
be estimated by the complexity of the filtering or declas-
sification rules, analogous to information flow assertions in
RESIN [24].

6. CONCLUSION
In this position paper, we argue that people cannot use

fine-grained policy models effectively to deploy secure sys-
tems. We propose that users should only be provided with
a small, coherent set of choices that lead to a secure sys-
tem. We show how we can take a cue from other system
processes such as CPU scheduling to automate the solution
to this problem. We model this access control configuration
as a graph-cut problem and show that solving the ”right”
cut problem can take us closer to our goal.

7. REFERENCES
[1] Comments on the Content Security Policy

specification. http://www.mail-archive.com/
dev-security@lists.mozilla.org/msg01530.html.

[2] Do you disable SELinux? http://stackoverflow.
com/questions/97816/do-you-disable-selinux.

[3] Google Chrome. http:
//www.google.com/chrome/intl/en/features.html.

[4] SELinux may cause mysterious permission problems.
http://drupal.org/node/50280.

[5] J. P. Anderson. Computer Security Technology
Planning Study, Volume II. Technical Report
ESD-TR-73-51, Deputy for Command and
Management Systems, HQ Electronics Systems
Division (AFSC), October 1972.

[6] D. Balzarotti et al. Saner: Composing static and
dynamic analysis to validate sanitization in web
applications. In IEEE Symp. on Security and Privacy,
2008.

[7] D. E. Bell and L. J. LaPadula. Secure Computer
System: Unified Exposition and Multics
Interpretation. Technical Report ESD-TR-75-306,
Deputy for Command and Management Systems, HQ
Electronic Systems Division (AFSC), March 1976.

[8] K. J. Biba. Integrity Considerations for Secure
Computer Systems. Technical Report MTR-3153,
MITRE, April 1977.

[9] W. E. Boebert and R. Y. Kain. A Practical
Alternative to Hierarchical Integrity Policies. In
Proceedings of the 8th NCSC, 1985.

[10] H. Chen, N. Li, and Z. Mao. Analyzing and
Comparing the Protection Quality of Security
Enhanced Operating Systems. In Proceedings of NDSS
’09, 2009.

[11] D. Denning. A Lattice Model of Secure Information
Flow. Communications of the ACM, 19(5), 1976.

[12] L. Gong et al. Inside Java 2 platform security
architecture, API design, and implementation.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[13] L. Khachiyan et al. Enumerating disjunctions and
conjunctions of paths and cuts in reliability theory.
Discrete Appl. Math., 155(2):137–149, 2007.

[14] D. King et al. Automating security mediation
placement. In Proceedings of ESOP ’10, pages
327–344, 2010.

[15] M. N. Krohn et al. Information flow control for
standard OS abstractions. In Proceedings of the 21st
ACM SOSP, Oct. 2007.

[16] A. C. Myers and B. Liskov. A decentralized model for
information flow control. ACM Operating Systems
Review, 31(5), Oct. 1997.

[17] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow.
http://www.cs.cornell.edu/jif,July2001-2003.

[18] Novell. AppArmor Linux Application Security.
http://www.novell.com/linux/security/apparmor/.

[19] Security-Enhanced Linux.
http://www.nsa.gov/selinux.

[20] M. M. Swift et al. Improving the granularity of access
control for windows 2000. ACM Trans. Inf. Syst.
Secur., 5(4):398–437, 2002.

[21] K. M. Walker et al. Confining root programs with
domain and type enforcement (DTE). In Proceedings
of the 6th USENIX Security Symp., 1996.

[22] E. Walsh. Application of the flask architecture to the
x window system server. In Proceedings of the 2007
SELinux Symposium, 2007.

[23] G. Wurster and P.C. van Oorschot. The developer is
the enemy. In Proceedings of NSPW ’08, 2008.

[24] A. Yip et al. Improving application security with data
flow assertions. In SOSP ’09, pages 291–304, 2009.

[25] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of the 7th OSDI, 2006.

78

