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ABSTRACT
The recent emergence of mandatory access (MAC) enforce-
ment for virtual machine monitors (VMMs) presents an op-
portunity to enforce a security goal over all its virtual ma-
chines (VMs). However, these VMs also have MAC en-
forcement, so to determine whether the overall system (VM-
system) is secure requires an evaluation of whether this com-
bination of MAC policies, as a whole, complies with a given
security goal. Previous MAC policy analyses either consider
a single policy at a time or do not represent the interac-
tion between different policy layers (VMM and VM). We
observe that we can analyze the VMM policy and the labels
used for communications between VMs to create an inter-
VM flow graph that we use to identify safe, unsafe, and
ambiguous VM interactions. A VM with only safe inter-
actions is compliant with the goal, a VM with any unsafe
interaction violates the goal. For a VM with ambiguous
interactions we analyze its local MAC policy to determine
whether it is compliant or not with the goal. We used this
observation to develop an analytical model of a VM-system,
and evaluate if it is compliant with a security goal. We im-
plemented the model and an evaluation tool in Prolog. We
evaluate our implementation by checking whether a VM-
system running XSM/Flask policy at the VMM layer and
SELinux policies at the VM layer satisfies a given integrity
goal. This work is the first step toward developing layered,
multi-policy analyses.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and protection; D.4.6 [Operating Sys-
tems]: Security and Protection—access controls

General Terms
Security
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1. INTRODUCTION
The recent development of reference monitors for virtual

machine monitors (VMMs) provides a mechanism (e.g., Xen
Security Modules (XSM) [5]) to enforce mandatory access
control (MAC) policies on operations that virtual machines
(VMs) execute on VMM resources. We refer to a VMM and
its constituent VMs as a VM-system. In a VM-system, a
VMM allocates memory, communication channels, and other
resources among VMs. A VMM reference monitor aims to
control whether one VM can access another’s memory or
communicate with another VM directly. In addition, VM-
systems not only enforce a VMM policy, they may also host
virtual machines that run operating systems that implement
their own MAC controls (e.g., SELinux [17]).

A problem is to determine whether the VM-system en-
forces a security policy that satisfies a security goal (e.g.,
secrecy and integrity restrictions). This task is difficult be-
cause: (1) the VMM and some VMs are trusted with the en-
forcement of the VM-system security policy; (2) such MAC
policies can be complex; and (3) the individual VMM and
VM MAC policies are developed independently. First, VM-
systems often contain privileged VMs that manage VMM
resources, and several other VMs may be entrusted with the
prevention of leakage or protection from untrusted data. As
a result, it is necessary to consider these VM MAC poli-
cies along with the VMM policy in determining the mean-
ing of the policy that governs the VM-system as a whole.
Second, both VMM and VM MAC policies may consist of
many rules. For Xen, the introduction of the Xen Security
Modules (XSM) framework enables the enforcement of com-
prehensive control over VMM resources within the hyper-
visor. The XSM/Flask [5] policy model for XSM is based
on SELinux, so VMM policies will be comprehensive, but
non-trivial. Combined with the trusted VM MAC policies,
many thousands of policy rules will have to be considered
to determine whether a security goal is enforced correctly.
Third, these MAC policies are not developed with a system-
wide goal in mind, so it will be necessary to determine such
security goals, and relate (map) each relevant MAC policy
to the goal.

Previous analysis of MAC policies either consider a sin-
gle policy at a time and/or do not represent the interaction
between policy enforcers at different system layers. First,
many policy analyses have been constructed to evaluate se-
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curity goals for a single MAC policy [9, 21, 27, 22]. These
analyses convert MAC policies into an information flow [7]
graphs that represent which MAC labels can operate on (i.e.,
read or write) other MAC labels. A naive approach would
be to compose these policies into a single information flow
graph and evaluate the resultant graph. However, such a
graph would be prohibitive in size, preventing effective anal-
ysis. The current SELinux reference policy [26] has around
2200 labels and enables 200000 information flows among
these labels (the although the actual number depends on
system configuration). Second, those policy analyses that
consider multiple policies [12, 14, 2] do not consider that
some policies may control operations at different software
layers. For example, a VMM policy restricts usage of VMM
resources, but the VM policy controls the usage of OS re-
sources. We have previously examined layering between the
application and the OS [19], but this is the first work we are
aware of that examines the relationship between VMM and
VM policies.

In this paper, we develop an information flow-based model
to represent inter-VM flows that the VMM policy enables
and inter-VM interactions the local VM policies enable (i.e.,
via VM-visible labels). We define an approach for construct-
ing such graphs automatically by identifying the information
flow mapping that is required between VM and VMM la-
bels. Using our previously-defined compliance analysis [10],
we show that performing an inter-VM analysis and VM-local
analyses for certain VMs is sufficient to prove compliance for
the composite of these policies. We have implemented our
approach in a Prolog-based tool. We demonstrate use of this
tool on VM systems consisting of XSM/Flask policies in the
VMM and SELinux policies in the VMs to show that these
policies satisfy an integrity policy goal.

In the next section we present background on compliance
analysis of individual mandatory access control (MAC) poli-
cies. In section 3 we elaborate on the problem that emerges
because of the composition of VMM and VM policies on a
VM-system. In section 4 we present an analytical model to
represent a VM-system. We provide an implementation of
the model, and a case study in section 5. Finally, we present
our conclusions and future work.

2. BACKGROUND
In this section we review the policy compliance problem

for individual MAC policies and show how this problem is
analyzed [10, 19]. Later, we build on this problem to analyze
VM-systems that consist of multiple MAC policies.

In a MAC system all resources, subjects and objects, are
represented with labels, and there is a policy that defines
access control rules in terms of those labels, i.e. a subject
with a subject label is allowed to perform an operation upon
an object with an object label. To evaluate the security en-
forced by MAC policies, we represent policies as information
flow graphs.

Definition 2.1 (Information Flow Graph). An in-
formation flow graph is a directed graph G = (V, E) where
V is the set of vertices, and E the set of edges in the graph.
Each v ∈ V is labeled with a label from L, the set of labels
assigned to subjects and objects in a MAC policy. An edge
(u, v) ∈ E if (1) u has write access to v, or (2) v has read

access for u. We use the functions V(G), and E(G) to get
the vertices and edges respectively.

Several systems that implement mandatory access con-
trols (MAC) are currently available [25, 28, 17]. We present
SELinux as an example to illustrate the Information Flow
Graph concept, and the properties we can evaluate on that
graph. SELinux is an extension of the Type Enforcement
model [4], it uses types for labels. Administrators assign
permissions using allow rules where the first argument is
the subject type (label), the second argument is the ob-
ject type (label) that includes the datatype (e.g., file), and
the third argument is the permissions (operation set) for
that object label. For instance, allow admin_t etc_t:file

{read write}, enables administrators to access files in the
directory /etc, with read and write permissions, assuming
administrators are assigned the label admin_t and files in
the directory /etc are assigned the label etc_t.

To create the graph we use SLAT’s [9], and PAL’s [21] def-
inition of information flow. First, we classify all permissions
in two categories: read_like and write_like. read_like

permissions enable subjects to get information about ob-
jects, write_like permissions enable subjects to modify ob-
jects. Second, we say there is an information flow from a
resource r1 with type t1 to a resource r2 with type t2 if the
policy has (1) an access rule allow t1 t2:class perm and
perm is classified as write_like, or (2) an access rule al-

low t2 t1:class perm and perm is classified as read_like.
We use the information flow graph to check security prop-

erties. For instance, we can determine all the types that
are allowed to write to a target type, or all the types a tar-
get type is allowed to write to. We can also evaluate the
Biba integrity [3] of a particular type or set of types (e.g.,
a proposed trusted computing base (TCB)). These analyses
can be generalized to evaluate security goals. Some security
goals can be represented as information flow graphs. For ex-
ample, confidentiality and integrity have long been known
to be information flow properties.

Definition 2.2 (Information Flow Goals). We spec-
ify an integrity information flow goal as a security lattice
Li = (Li,vi). The lattice Li has a top > and a bottom ⊥
elements that represent the highest and lowest integrity level.
Given a, b ∈ Li, a vi b indicates that a can flow to b, but
not the other way around.

We specify a confidentiality information flow goal as a se-
curity lattice Lc = (Lc,vc). The lattice Lc has a top > and
a bottom ⊥ elements that represent the lowest and highest
secrecy levels. Given a, b ∈ Lc, a vc b indicates that a can
flow to b, but not the other way around.

Definition 2.3 (Policy Compliance). We write u ↪→G

v if there is a path between vertices u and v in the graph G,
and i vL j if i can flow to j in the lattice L. An information
flow graph G = (V, E) is compliant with an information flow
goal L = (L,v) if exists a mapping h : V → L such that for
all u, v ∈ V , h(u), h(v) ∈ L, if there is a path u ↪→G v, then
h(u) vL h(v).

Figure 1 shows an information flow graph G and an in-
tegrity information flow goal I for a generic application. The
information flow graph complies with the information flow
goal under the mapping function int because for every flow
src ↪→G tgt, int(src) vI int(tgt) is enabled too. For exam-
ple, etc t ↪→G app t and int(etc t) vI int(app t).

In this paper, we extend our initial approach to evalu-
ate compliance of VM-systems. We decided to extend our
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Figure 1: Information flow graph and integrity in-
formation flow goal for a generic application. The
graph is compliant with the goal under the mapping
function int level.
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Figure 2: From single MAC policy systems to VM
systems. A MAC policy system governs how pro-
cesses use OS resources, and a VMM policy governs
how VM use VMM resources.

approach because it has two key advantages compared to
other approaches: (1) we can use the security goal as an
intermediate representation, therefore we can relate several
policies with different semantics and granularities, and (2)
we can automatically deduce some security goals, therefore
reducing the burden of goal specification on administrators.

3. PROBLEM DEFINITION

3.1 VM-System Architecture
In this paper, we consider a single physical machine that

runs a VMM directly over hardware (Type 1 VMM [8]).
Type 1 VMMs, in the interest of remaining bug-free, aim
for minimal function. We consider the case where they of-
fload responsibilities of administration (e.g., creation and
deletion of VMs) and device driver implementation to other
VMs, and only provide an interface to support these capa-
bilities [18, 13]. For example, the VMM may offer the ab-
straction of shared memory and virtual interrupts to allow
device drivers to communicate with the VMs using them.

In such a system, there is a policy in the VMM, and poli-
cies in each of the VMs. Figure 2 shows similarities between
a single MAC policy and a VMM policy in a VM-system.
The VMM policy governs the flows between VMs using the
abstractions provided by the VMM. Thus, a VMM policy
labels VMs and other VMM resources and describes the ac-
cess rights of VM labels to VMM resource labels. The VM
policy is an OS MAC policy, which governs the flows among
process using the abstractions provided by the OS, as de-
scribed in Section 2 for SELinux.

We distinguish three types of VMs in our systems. First,
because we want to keep the VMM as small as possible, VM-
systems have privileged VMs that manage access to phys-
ical resources (e.g., disk and memory) for every VM. All
VMs communicate with the privileged VMs to obtain and
use the system’s physical resources. Second, service VMs
provide general system functions (e.g., VM loading and in-
tegrity measurement [1]) for other VMs. Third, user VMs
run applications by using resources from privileged VMs and
services from service VMs.

A VM-system provides mechanisms for VMs to commu-
nicate. For example, the Xen VMM system (Section 5.1)
enables VMs to send messages using grant tables and event
channels. Also, VMs may communicate by sharing memory.
Processes running inside VMs do not use these mechanisms
directly, however. The VM operating systems map inter-
machine communication (i.e., networking) to these VMM
mechanisms. Note that the VM operating system also uses
VMM mechanisms to obtain physical resources from the
privileged VMMs, but this is invisible to the VM processes
and its MAC enforcement (i.e., the reference monitor in the
VM).

In a VM-system, both the VMM and a VM’s operating
system may authorize the same communication. First, all
inter-VM communications are authorized by the VMM using
its labels. For example, the Xen VMM authorizes a VM’s
access to sending a message via a grant table by determining
whether the VM’s label in the VMM policy can send to
grant tables of a particular label. In addition, when the
VM’s operating system is aware of a communication, it may
also authorize it. For example, many operating systems can
authorize network communication. In this case, the VM
operating system determines whether a process can send a
message via a network channel (e.g., IPsec). Thus, we define
two types of inter-VM flows in a VM-system:

Type 1 Flow: An object that enables VM-to-VM commu-
nication that is assigned a VMM label only. Such flows are
either invisible to the OS (e.g., access to physical resources
via privileged VMs) or given a default OS label (e.g., unla-
beled networking). Such flows are assigned the VMM label,
so the security of the data communicated is based on the
security level of this label.

Type 2 Flow: An object that enables VM-to-VM commu-
nication that is assigned both a VMM and VM label. Such
flows are assigned a composite label
VMM_label.VM_label. The security of this label is deter-
mined by the level of the VM label, but that level must be
consistent with the VMM label’s security level.

3.2 VMs with Multiple Security Levels
VMs may be authorized to access data at multiple secu-

rity levels. For example, the privileged VMs provide phys-
ical resources for all VMs, so they are trusted with all se-
curity levels of data in the system. Service VMs may also
be trusted with data of multiple security levels, as they may
serve multiple VMs. Even some user VMs may be entrusted
with handling multiple security levels of data. This is par-
ticularly true for integrity, where a VM may be trusted to
perform high integrity functions, even when it receives low
integrity requests.

VMs entrusted with multiple security levels must ensure
that illegal information flows do not result, this task includes
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conveying labels to other VMs to ensure that they enforce
security properly. As an example, consider Figure 3. Sup-
pose we have VMs V M1, V M2 and a privileged VM, and
processes labeled A, B, C, and D, and assume that process
B sends data to process C. The VM is assigned a label in
the VMM policy and the processes are assigned labels in the
VM policy. Suppose that the processes have different labels
that also imply different secrecy levels, L1 and L2 in V M1
and L2 and L3 in V M2. Assume that L1 v L2 v L3.

When B sends a message to C, we need to determine
the security level of the data that may be communicated to
assess the security of the VM-system. For example, since
V M1 has both L1 and L2 processes, it may send either L1
or L2 data. Hence, we say that V M1’s VMM label implies
a range of security levels. This may result in ambiguity in
analysis, because V M2 is not allowed to access L1 data.
However, when B of level L2 sends a communication to C
of level L2, this should be allowed. The problem is that the
level of the process labels is lost — we do not know that the
data is labeled L2.

In order for such a communication to be authorized, the
VMM and two VMs must correctly authorize the flow. The
VMM policy may allow data from V M1 label to flow to
V M2, but this would involve some risk for the VMM as
some unauthorized flows could result. The VMM policy is
depending on the VM policies in V M1 and V M2 to correctly
enforce the flow. Fortunately, VM policies can enforce inter-
VM flows. For example, netlabel [16] and Labeled IPsec [11]
enable two VMs (systems) to agree on a label before com-
municating data between the VMs. For example, the two
processes B and C could cause their respective VMs to ne-
gotiate a network flow at a label X. We call such VM policy
labels used to label inter-VM flows, VM-visible labels (see
Definition 4.3). Since B and C are both running at level
L2, the flow is then from L2 to L2, so this is legal.

Unfortunately, VMs may not declare all inter-VM flows
using VM-visible labels. As described above, VMs access the
privileged VM in a manner that is invisible to the MAC pol-
icy. The mechanism to virtualize the VM creates a problem,
because the OS does not tell the privileged VM the security
level of the data being conveyed. Further, inter-VM commu-
nications may not be labeled: the two VMs do not specify a
label for the communication channel. In both of these cases,
we must assume that any data from the VM may be com-
municated, so these communication channels can have data
spanning the full range of security levels of VM.

Based on the notion of multiple security levels in VMs, we
refine our definitions of the types of inter-VM flows.

Type 1 Flow: Invisible or unlabeled inter-VM flows are
assigned a VMM label only. The security level of this flow is
the range of security levels for the sending VM in the VMM
policy.

Type 2 Flow: These flows are associated with VM-visible
labels. The security level of this flow is the security level of
its VM-visible label, as long as that level is within the range
of security levels for the VM based on the VMM policy.

3.3 Summary
The problem that we address in this paper is as follows.

For a VM-system with a VMM MAC policy and multiple
VMs with their own MAC policies that may span a range
of security levels, we aim to build an information flow-based

VM1 (service VM)

A 
(L1)

VM2 (client VM)

Privileged VM 
implementing 

network device 
driver

C 
(L2)

{L1, L2} {L2, L3}

{L2}

D 
(L3)

B 
(L2)

Figure 3: Information flows in a 3-VM system with
with applications A, B in V M1 and C, D in V M2.
B is sending data to C. Labels of applications are
within parentheses. Labels of flow are marked on
the arrow.

analysis approach that uses Type 1 and Type 2 Flows to
determine whether all inter-VM flows are compliant with an
information flow security goal. Because VMs may support
multiple security levels, we cannot determine whether an
intra-VM flow may not comply, but we can use the compli-
ance analysis of Definition 2.3 to evaluate this. Further, we
will not need to verify VM compliance for VMs that only
support one security level, as compliance on inter-VM flows
verifies their overall compliance. This reduces the number
of VMs that must be evaluated.

3.4 Related Work
Our work provides a model to analyze multiple, layered

policies in a VM-system. We perform a global analysis on
VM interactions, followed by local analyses of VM policies
where required. Though previous work deals with multiple
policies, they do not address policy layering in VM systems,
and the reduction of analyses resulting from it. We present
below previous approaches dealing with multiple policies.

The Flexible Authorization Manager Framework (FAM) [12]
enables specification and enforcing of multiple access control
models within a single system. The framework has an au-
thorization manager that governs access control decisions
and a language to define the policy that the authorization
manager will enforce. This approach is different from ours,
while FAM focuses on policy specification and enforcement,
we aim to provide a framework to analyze simple and com-
posite policies.

Another framework [14] proposes a formalism to specify,
compare and integrate access control policies. The formal-
ism represents policies as graphs and uses the theory of
graph transformation to integrate policies into one graph
and analyze them. By taking advantage of the policy lay-
ering in a VM-system (VMM policy control relationships
between policies while VM policies control objects inside
VMs), we do not need to integrate all the policies into a
single graph, therefore we aim to reduce the size of the ac-
tual representation while keeping the information we need
to evaluate information flow security goals.

The MACS [2] framework enables administrators to spec-
ify multiple access control policies within the same system.
The authors define policy composition as the coexistence of
several access control models such that each of them handles
a different partition of the set of objects to be protected.
This approach is not appropriate for our analysis because
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we need to consider the objects that the involved policies
(VMM and VMs) share, these objects are the enablers of in-
teraction between policies that otherwise would be isolated
from each other.

4. VM SYSTEM POLICY MODEL
This section presents the model we developed to repre-

sent VM-systems and enable administrators to evaluate VM-
system’s properties. It represents a composition of single
MAC policies, one at the VMM layer and several at the VM
layer, and the interactions among VMs. To do so, we extend
our model to analyze single MAC policies (Section 2).

A first approach to represent a VM-system as a whole
would be to create an information flow graph with each of
the individual flow graphs of all VMs and add edges between
nodes of different VMs and applications for Type 1 and Type
2 flows. Though this representation is expressive, it is re-
dundant and the information flow graph size increases the
requirements to store and handle the model.

We observe that evaluating properties of a VM-system as
a whole is the same as evaluating those properties on their
inter-VM interactions and then evaluating each VM. We use
this observation to develop our model.

4.1 VM-System Model
Below, we present our VM-system policy model. We as-

sume that the only way data can flow in and out from a single
VM is through the abstractions provided by the VMM, and
the network.

A virtual machine vmi in a VM system has two associated
elements: (1) a label, and (2) a local MAC policy. The
VMM policy assigns the VM a label and specifies access
control rules on VMM resources based on that label. The
local policy is the VM’s OS MAC policy. Also, a VM’s
label is assigned integrity and secrecy level ranges. A VM
range indicates the degree to which the VM is trusted to
enforce system requirements, protecting higher integrity and
higher secrecy data from lower secrecy and lower integrity
processing. A range also defines the lowest and highest levels
that may be associated to elements a VM contains and may
send and receive in interactions with other VMs. Some VMs
may be single level, the low and high values in its range are
equal e.g. low-low.

Definition 4.1 (Integrity/Secrecy ranges for VMs).
Virtual machines in a VM-system are assigned integrity and
secrecy ranges. The functions integrity and confiden-

tiality map a VM to its integrity and confidentiality ranges
respectively. The functions lint and hint return the low
and high levels in an integrity range respectively. The func-
tions lconf and hconf return the low and high levels in the
confidentiality range respectively.

We use the function lint to define the label of any infor-
mation that a VM may send by default, and hconf to define
the label of any information a VM may receive by default.
Because the VM label represents the label of any informa-
tion that the VM may send, the VMM must interpret this
label as having the highest secrecy of any label in the VM.
If a VM label’s secrecy were not the highest secrecy in its
range, then an unlabeled flow could leak secret information.
Similarly, the VM label’s integrity must be the lowest in-
tegrity in the VM’s range to prevent a receiver from being
tricked into accepting data at the wrong integrity level.

As previously stated, there are two types of flows between
VMs. We use the next definitions to represent those con-
cepts.

Definition 4.2 (Type 1: Default Flows). A default
flow represents a communication channel between VMs en-
abled by a VMM policy.

Definition 4.3 (VM-visible labels). A VM-visible la-
bel is a label assigned by two applications running on differ-
ent VMs to a channel they will use to communicate. We add
the label of the hosting VM to differentiate between a label
vmi.l supported by a VM vmi and a label vmj .l supported
by a VM vmj.

Definition 4.4 (Type 2: VM-visible Flows). A VM-
visible flow represents a communication channel between two
applications running in different VMs with an associated
VM-visible label.

An information flow graph G = (V, E) that represents a
VM-system includes the information flows among VMs and
VM-visible labels in the system via Default and VM-visible
flows (Type 1 and Type 2 Flows, as defined in Section 3.2).

Definition 4.5 (VM Information Flow Graph). A
VM information flow graph G = (V, E) is an information
flow graph such that V contains: (1) the labels assigned to
the VMs by the VMM policy and (2) the VM-visible labels.
E contains: (1) the flows allowed by the VMM policy and
(2) the flows enabled by VM-visible labels.

4.2 Compliance
In this section, we outline an algorithm to evaluate com-

pliance for VM-systems based on the analytical model we
presented in Section 4.1. First, we build the VM informa-
tion flow graph (Definition 4.5) of the VM-system. Second,
we build a security goal for the VM-system and resolve the
mapping between the security levels in the security goal and
the labels of the information flow graph. Although this task
requires manual work, we discuss ways to reduce manual ef-
fort. Third, we evaluate compliance of the inter-VM flows of
the VM-system. A complete, successful evaluation will show
that each flow in a VM-system is safe (see Definition 4.6, be-
low). Once we show that inter-VM flows are safe, then it is
only necessary to evaluate local VM compliance using the
approach outlined in Definition 2.3.

Step 1. Build VM information flow graph. In this
step we describe how to build a VM information flow graph
(Definition 4.5). First, we create the set of vertices: we add
a vertex for: (1) every label the VMM policy associates with
hosted VMs, and also (2) for every VM-visible label. Second,
we create the edges that represent information flows: we add
an edge for: (1) every information flow defined by the VMM
policy (Type 1 Flow), and (2) every VM-visible type that
enables a labeled communication channel (Type 2 Flow).

Figure 4 shows a scheme of the policies associated with
a VM-system. This VM-system has four VMs: dom0_t,
domp_t, doms_t, and domu_t. The solid line arrows between
VMs represent inter-VM information flows enabled by the
VMM policy. The dashed ellipses represent local VM poli-
cies and the dashed arrows VM-visible flows.

Step 2. Define security goal and mapping func-
tion. In this step, we define an information flow goal L
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Figure 4: VM-System Policy and Information Flow
Graph. dom0_t, domp_t, doms_t, and domu_t are VMs.
The solid line arrows between VMs represent in-
formation flows enabled by the VMM policy. The
ellipses represent local VM policies. The dashed ar-
rows represent VM-visible flows. The information
flow graph shows our VM-system representation.

that determines the authorized flows between the security
levels in the VM-system, and we map the labels in the VM
information flow graph to the security levels.

Although these tasks require manual specification, we have
mechanisms to automatically deduce some goals and map-
pings. For instance, we can compute an initial integrity goal
based on the relationships among virtual machines, VMs
that run VMM back-end services require the highest in-
tegrity level, and VMs that run servers require higher in-
tegrity than client VMs. These relationships do not change
with VM migration since the purpose of the VM does not
change, for instance, a client VM will still be a client VM
after migration. Application data may also have integrity
and secrecy requirements, we expect them to be specified as
part of the application policy.

To compute the mapping function we use the identity
function as a starting point. We use Type 1 flows to build
the goal and use the declared Type 2 flows to help admin-
istrators identify the labels that must be mapped. Finally,
we analyze the internal MAC policies to help administrators
identify the applications that can communicate to other sys-
tems via non-labeled channels so they can be resolved. Ad-
ditional mechanisms to automate the generation of goals and
mapping functions are part of our future work.

Step 3. Verify Compliance for VM information
flow graph. We notice that evaluating compliance of a VM-
system as a whole is equivalent to evaluate compliance of the
VM information flow graph (Definition 4.5) and compliance
of each one of the local VM MAC policies.

Definition 4.6 (Information Flow Compliance).
Given a lattice L = (L,v) and a flow (u, v) ∈ E and map-
ping functions integrity and secrecy, the flow is compli-
ant if it is SAFE, non-compliant if it is UNSAFE, and has
unknown compliance if it is AMBIGUOUS, as defined below
(in terms of integrity, confidentiality is analogous).

let iu=integrity(u), iv=integrity(v):
[ lint(iu) v hint(iv) ] → SAFE(u, v)
[ hint(iu) 6v lint(iv) ] → UNSAFE(u, v)
[ ( lint(iu) v lint(iv) ∧ hint(iv) v lint(iu) ) ∨

( hint(iu) v lint(iv) ∧ hint(iv) v hint(iu) ) ] →
AMBIGUOUS(u, v)

A flow is SAFE if the lowest integrity of the source label
can flow to the highest integrity of the target label. Ac-
cording to Biba [3], all possible combinations of these levels
would be secure. A flow is UNSAFE if even the highest
integrity that the source label may generate cannot flow to
the lowest integrity the target label can accept, so all pos-
sible flows are insecure (i.e., violate Biba integrity). A flow
may be AMBIGUOUS if the level ranges associated to the
source and target labels overlap, so the flows between these
labels may or may not violate Biba integrity. Further analy-
sis will be necessary to determine whether the flow is SAFE
or not.

Step 4. Find Information Flow-Safe VMs. After
evaluating Information Flow Compliance, VMs that have
only SAFE flows may be isolated from the inter-VM flow
analysis. As such VMs are only involved in SAFE inter-
actions with other VMs, then they cannot cause a security
violation based on their interactions with other VMs.

Definition 4.7 (Information Flow-Safe VM). Given
a VM Information Flow Graph G = (V, E), define Flows(vm)
for a VM vm, as all flows (u, v) ∈ E where u = vm or
v = vm. A VM vm is said to be information flow-safe if
∀(u, v) ∈ Flows(vm) → [SAFE(u, v)]. An information-
flow safe VM cannot cause an information flow error in any
other VM in G, so the VM-system can be assessed indepen-
dently from vm.

The result is that an information flow-safe VM can be
isolated from the VM information flow graph. However, if
the VM handles a range of security levels it must have its
local VM MAC policy evaluated for compliance. We can
perform this evaluation independently from that for the VM-
system.

Step 5. Disambiguate Flows. A VM may have flows
that are AMBIGUOUS. To disambiguate such flows, it is
necessary to evaluate the VM’s MAC policy to determine
the actual flows that can result. We must look at the MAC
policies at both the output and input VMs. For each output
(input) label, we must determine the possible security levels
for data that may be sent (received) using that label. For a
VMM label, the processes with the ability to send to (receive
from) an unlabeled_t channel in the VM’s SELinux policy
can send (receive) data at that label. Thus, it is the security
level of these processes that determines the possible security
levels of data that may be communicated using this flow.

Based on the actual range of the process, we enumerate
the possible flows and determine if they are all SAFE. For
example, if an output label u is assumed to span the security
level range L1 to L3, but only processes at level L3 can send
unlabeled_t data, then the flow need only be assessed for
L3 output. We must classify each flow as either SAFE or
UNSAFE. A VM that has only SAFE flows is information
flow-safe, and all VM-system VMs must be information flow-
safe in a compliant system.

Step 6. Verify compliance for local VM MAC poli-
cies. For VMs that process data at a range of security levels,
we will need to verify compliance of the VM’s MAC policy,
even if it only has SAFE flows. This is because there may
be a non-compliant flow within the VM MAC policy that
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violates the requirements for the inter-VM flows. For exam-
ple, a VM may be authorized to receive low integrity data,
but if it fails to sanitize the data before using it in a high
integrity process that would violate compliance. Such non-
compliance is a problem with the VM MAC policy, as the
flow knowingly accepted low integrity data, but the VM pol-
icy allowed flows within the VM that do not comply with
the security goal.

In the following paragraphs, we prove that evaluating a
VM-system as a whole is equivalent to evaluating the parts
and their interactions.

Theorem 1. A VM-system is compliant with a secu-
rity goal if: (1) all the inter-VM flows are information flow
compliant with the security goal and (2) all the VMs are
compliant with the security goal.

Proof Sketch for Theorem 1: (By contradiction) Assume
that a VM-system is compliant and either there exists a VM
that is not compliant or there exists an inter-VM flow that
is not information flow compliant. If a VM is not compli-
ant then an information flow that is not authorized by the
security goal is present in a VM, which violates compliance.
If an inter-VM flow is not information flow compliant, then
there exists an information flow that is not authorized by
the security goal.

5. IMPLEMENTATION AND EVALUATION
In this section we present a framework that implements

the analytical model we presented in section 4, and enable
administrators to test compliance and other properties on
the model. We encoded the model in Prolog, using the XSB
Prolog implementation [6]. XSB has multiple advantages; it
uses tabled resolution to improve performance, the encoding
of the operators defined in the model is trivial in most cases,
Prolog is ideal for implementing search algorithms, and to
extend the implemented interface is easier than it would be
with any other language, although it does require skills to
program in prolog [21, 10, 6]. To evaluate our approach and
its implementation, we check whether a VM-system running
SELinux in the VMs, and XSM/Flask on the Xen hypervi-
sor, meets a specific security goal. We first introduce Xen
and XSM/Flask, and then we present a case study, its anal-
ysis and results.

5.1 Xen, XSM and XSM/Flask
XSM implements mandatory access controls (MAC) for

the Xen hypervisor (VMM). Xen is a type I virtual machine
monitor (VMM) that runs directly on the hardware. Op-
erating systems running on Xen are paravirtualized to trap
the sensitive operations into the hypervisor, so the hypervi-
sor can enforce controls on these sensitive operations [18].
Xen presents these sensitive operations to the OS via a hy-
percall interface. This is similar to how the operating system
presents operations to processes through system calls.

A VM is called a domain in Xen. dom0 is a privileged VM
for administration and hosts device drivers, though there
is provision for driver domains. The XSM design is de-
rived from Linux Security Modules (LSM). The LSM [23]
approach inserts hooks in the Linux Kernel, in points that
involve access to security relevant objects. XSM provides
a set of hooks in the Xen kernel, to mediate access to se-
curity relevant Xen resources. Current security modules
that can be linked at boot time with an XSM system are:

Dummy (XSM default), ACM/sHype (IBM) [20], and Flask
(NSA) [5]. An XSM/Flask module provides Xen the same
kind of functionality that SELinux gives to Linux.

The resources that Xen provides are analogous to Linux:
domains (processes), event channels (signals) and grant ta-
bles (shared memory). Sensitive operations on these are
intercepted by XSM hooks and controlled by Flask policy.
For example, sensitive operations on domains include cre-
ation and deletion. In this environment, Type 1 flows are
caused through event channels and grant tables, which are
the VMM abstractions used by VMs to communicate.

The XSM/Flask [5, 24] module uses the existing SELinux [17]
policy language to specify the rules that define an XSM pol-
icy. To be able to analyze an XSM/Flask policy we studied
its semantics and defined the mapping of XSM/Flask per-
missions to the read_like and write_like semantics. See
[29] for more details.

5.2 Case Study - Integrity
This section presents a simple VM-system and its analysis.

Example 5.1. We have a VM-system with a privileged
VM dom0_t, a service VM doms_t, and two user VMs domu_t
and domv_t. dom0_t has access to all VMM resources, it
runs back-end services that enable access from other VMs
to VMM resources. doms_t runs a server that clients in
domu_t and domv_t use. The server running on doms_t ne-
gotiates channels to communicate with (a) the client run-
ning on domu_t with label c2_t, and (b) the client running
on domv_t with label c1_t.

Table 1 shows excerpts of the XSM/Flask policy, the SELinux,
and IPsec policies in the VM-system. The XSM/Flask pol-
icy defines flows among VMs. The table shows some of the
permissions that dom0_t subjects have on domu_t resources,
i.e., that belong to the domain DomU. The SELinux policy
shows permissions assigned to an application running with
label server_t on its own resources and resources labeled
with c1_t (the label assigned to domv_t in the VM-system).
The IPsec policy defines label and security features to as-
sign to network connections between the indicated source
and target points (sr and tg respectively). Note that the
only VM-visible labels currently are defined in the IPsec pol-
icy, but that need not be the case for our model in general.

Figure 5 shows the graph with the information flows en-
abled by these policies (graph to the left). Logically, doms_t
communicates with domu_t and domv_t, but such commu-
nications are implemented by dom0_t, so the actual system
information flows are different. We will build the actual in-
formation flow graph below (Step 1). This figure also shows
the information flows authorized by the security goal (graph
to the right). This graph identifies the system’s integrity
levels and the authorized flows among them. We will need
to map the system’s labels to those levels for analysis (Step
2). Then, we will perform VM-system analysis in Steps 3-
5 and verify that the VM policies are consistent with the
VM-system in Step 6.

Step 1. Build VM Information Flow Graph. We
build the graph with data from the XSM/Flask policy and
the network policy. Since dom0_t implements network com-
munication, all VM-visible labels connect a VM with dom0_t

at that label. We also assume that each VM can send com-
munications using its VMM label (e.g., Type 1 Flows). We
also need to analyze the XSM/Flask policy to identify other
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XSM/Flask Policy:
allow dom0_t domu_t:domain {create max_vcpus hypercall setdomainmaxmem setvcpucontext scheduler};
allow dom0_t domu_t:shadow {enable};
allow dom0_t domu_t:mmu {map_read map_write pinpage};
allow dom0_t domu_t:grant {query setup};
SELinux Policy:
allow server_t c1_t:tcp_socket relabelto accept read write connect;
allow server_t c1_t:association recvfrom sendto;
allow server_t server_t:file read write append create getattr setattr;
allow c1_t ipsec_spd_t:association polmatch;
IPsec Policy: (IPsec labeled)
spdadd <tg> <sr> any -ctx 1 1 "system_u:object_r:ipsec_spd_t:s0" -P out ipsec esp/tunnel/ <sr>-<tg> /req;
spdadd <tg> <sr> any -ctx 1 1 "system_u:object_r:ipsec_spd_t:s0" -P in ipsec esp/tunnel/ <tg>-<sr> /req;

Table 1: Excerpts of XSM/Flask, SELinux, and IPsec policies in a VM-system.
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(c2-priv)

domu_t
(c2-c2)

doms_t
(c2-service)

domv_t
(c1-c1)

Information Flow Graph (G) Integrity Security Goal (I)

domu_t.c2

doms_t.c2

priv

service

c2

c1

domv_t.c1

doms_t.c1

Figure 5: VM Information Flow Graph that repre-
sents the VM-system described in Example 5.1 and
the security goal to evaluate integrity compliance.
The solid and dashed arrows in the VM information
flow graph represent Type 1 and Type 2 inter-VM
flows respectively.

VMM resources that enable information flows between VMs,
such as shared memory.

Figure 6 shows the graph. The solid arrows represent
Type 1 inter-VM flows (enabled by the VMM policy). All
VMs can communicate with dom0_t because it implements
all back-end services, including networking which is the only
means of communication between VMs in this example. The
dashed arrows represent Type 2 inter-VM flows (enabled by
the VM-visible labels). The labeled IPsec policy specifies:
(1) the network connection between doms_t and dom0_t, for
the server to receive messages at doms_t.c1_t and doms_t.c2_t;
(2) between domu_t and dom0 t for this client to send and
receive messages at domu_t.c2_t; and (3) between domv_t

and dom0_t for this client to send and receive messages at
doms_t.c1_t. In practice, the last two cases do not strictly
require VM-visible labels (as the VM label is at the same
integrity level), but this is shown for clarity.

Definition 5.1 (Supporting VM). Supporting VMs are
trusted to perform two security functions: (1) all the infor-
mation flows from the supporting VM to any of its clients
occur at the security level range of the client and (2) a sup-
porting VM enforces noninterference on each input received
from a client, so the supporting VM enables no information
flows among client data.

dom0_t
(c2-priv)

domu_t
(c2-c2)

doms_t
(c2-service) domv_t

(c1-c1)

Information Flow Graph (G)

domu_t.c2

doms_t.c2
domv_t.c1

doms_t.c1

dom0_t.c2 dom0_t.c1

Figure 6: Actual Inter-VM Flows. The back-end
servers that run in Dom0 implement network com-
munication between processes that belong to differ-
ent VMs. In the figure we split the flow between
domu_t.c2 and doms_t.c2 into several flows (indicated
by the dashed arrows) to represent this fact.

dom0_t is a supporting VM, multiple back-end services
running in dom0 have access to VMM resources and pro-
vide other VMs access to such resources. We represent the
supporting VM with double line in Figure 6. In current im-
plementations VMs access VMM resources only via dom0.
However, Dom0 disaggregation [15] distributes these tasks
among multiple VMs. In that case, our model would have
multiple supporting VMs.

Step 2. Define Security Goal and Mapping Func-
tion. For this example, we describe the manual approach to
specify goals and mapping functions. We define Prolog pred-
icates int_glevels, int_gedges and integrity to specify
an integrity security goal and map the labels in the policy
to the levels in the goal. Even where specified manually,
we could use a graphical interface to make the specification
stage easier for administrators. The first two predicates de-
fine the integrity levels and the relation can flow to between
the levels, respectively. The predicate integrity specifies
the mapping function, it requires a resource label and the
lowest and a highest security levels associated to the re-
source. Goal I in Figure 5 shows a graphical representation
of the lattice defined by the predicates int_glevels and
int_gedges below. The element (priv, service) indicates
that privileged domains, such as dom0, are higher integrity
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Id Channel Enabled Flow Result
1 dom0 t → doms t c2-priv → c2-serv ambiguous
2 dom0 t → domv t c1* → c1 safe
3 dom0 t → domu t c2* → c2 safe
4 dom0 t ← doms t c2-priv ← c2-serv ambiguous
5 dom0 t ← domv t c1* ← c1 safe
6 dom0 t ← domu t c2* ← c2 safe
7 domu t.c2 → dom0 t.c2 c2 → c2 → c2 safe

→ doms t.c2
8 domu t.c2 ← dom0 t.c2 c2 ← c2 ← c2 safe

← doms t.c2
9 domv t.c1 → dom0 t.c1 c1 → c1 → c1 safe

→ doms t.c1
10 domv t.c1 ← dom0 t.c1 c1 ← c1 ← c1 safe

← doms t.c1

Table 2: Evaluation of the Information flows repre-
sented in Figure 6. Flows from and to dom0_t are safe
because Dom0 is a supporting VM (marked with *).
Although the range for Dom0 is c2-priv the back-end
servers can establish connections at the level of the
clients (in Flows 1-6). Flows 7-10 use VM-visible
labels at a single security level to ensure safety.

than their client VMs. Likewise, (service, c1) indicates that
servers are higher integrity than their clients.

int_gllevels([priv,service,c1,c2]).

int_gedges([(priv,service),(priv,c1),(priv,c2),

(service,c1),(service,c2),(c1,c2)]).

integrity(dom0_t,c2,priv).

integrity(doms_t,c2,service).

integrity(domv_t,c1,c1).

integrity(domu_t,c2,c2).

The integrity ranges of these VMs indicate the security
levels that the VMs are trusted to handle and the labels
they may use to communicate. For example, dom0_t must
be able to communicate to any VM in the VM system at the
proper integrity level, therefore it has the range c2-priv.

Step 3. Verify compliance of the VM information
flow graph. We check compliance of the VM information
flow graph against the integrity goal. First, we classify flows
into SAFE, UNSAFE, and AMBIGUOUS. If all the
flows are SAFE then we go to the next step. If we de-
tect UNSAFE flows, we report them and the system as
noncompliant. AMBIGUOUS flows require further anal-
ysis, described below. Table 5.2 shows a summary of the
analysis for Example 5.1. The flows to and from domu_t

and domv_t go via dom0_t, they are SAFE because dom0
is a supporting VM (see Definition 5.1) and these VMs use
only one integrity level and the supporting VM will reply in
the client’s integrity level. The flows involving the doms_t

VM are AMBIGUOUS, as we cannot tell what integrity
level is actually used by doms_t (further analysis in Step 5).

Flows from domu_t to doms_t via VM-visible labels are
SAFE because the data is conveyed from domu_t to dom0_t

to doms_t using VM-visible labels at level c2 (defined by
IPsec policy), so all intermediate flows are SAFE. The
approach is similar for the flows from domv_t.

Step 4. Find Information Flow-Safe VMs. domu_t

and domv_t are information flow safe, i.e. they are source
and target for only SAFE flows.

Step 5. Disambiguate Flows. For the AMBIGUOUS

flows, we analyze the local MAC policies of the involved VMs
to determine the actual levels of the data sent via these flows.
First, we determine the security levels of the processes, in
the VMs, that can send data with the levels in the range
associated to the flow. We identify two cases: (1) processes
that may use dom0_t as a supporting VM and (2) processes
that may send data labeled with doms_t. In the first case,
the guarantees assumed by the supporting VM ensure that
these communications are SAFE. In the second case, we
identify the processes in doms_t authorized to send data la-
beled with doms_t. In SELinux, those processes are the ones
with create or bind permissions on tcp_sockets with type
unlabeled because an unlabeled communication defaults to
the label of the VM. The services that run in dom0_t should
have level priv, which is the higher integrity level, so the
communication to doms_t is SAFE (Table 5.2, row 1). The
flow from doms_t to dom0_t is only SAFE if the dom0_t

processes use service level for receiving the communication
and have satisfactory filtering interfaces for this data [22].
Since dom0_t provides services to less trusted VMs, it should
have such filtering interfaces to protect its integrity.

Step 6. Verify local compliance for every VM.
Since domv_t and domu_t are single level, we can exclude
them from local compliance evaluation. The VMs that need
to be evaluated are dom0_t and doms_t. In this case dom0_t

is marked as a supporting VM, meaning it is capable of
connecting to multiple clients at various integrity levels while
enforcing noninterference between their information flows.
A justification of supporting VM properties is future work.
For doms_t, we follow the procedure described in Section 2
to evaluate its VM policy. In brief, we create an information
flow graph based on the doms_t VM policy, and we test the
graph against the system integrity goal.

5.3 Space Requirements
To evaluate the advantages of our approach to test VM-

system compliance we estimate space requirements for the
naive model, i.e., integrate the policies from all the VM-
system components into a single information flow graph, and
for our model. The information flow graph representation
of the available XSM/Flask policy has around 15 vertices
and 100 edges. The information flow graph of the SELinux
reference policy has more than 2200 vertices and 200000
edges. The number of applications enabled by the SELinux
policy to access network resources is around 420, this is the
upper bound (per VM) of the number of possible information
flows between VMs.

Therefore, the size of the naive model would be the size of
the XSM/Flask policy representation, plus n times the size
of the SELinux policy representation, where n is the number
of VMs in the VM-system. In comparison, the size of our
model, in the worst case, is the size of the XSM/Flask policy
representation plus (n * 420) edges. In some cases we will
need to independently test SELinux policies for VMs but we
do not need to test all of these policies at the same time.

6. CONCLUSIONS AND FUTURE WORK
We presented a framework to analyze multiple, layered

MAC policies being enforced in a VM-system. We observe
that evaluating a VM-system as a whole is the same as inde-
pendently evaluating (1) the interactions and (2) each VM
policy. Therefore, we only combine the policies where inter-
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action occurs. BY doing so we reduce the size of the prob-
lems to evaluate. We designed an analytical model based on
this observation and implemented it in Prolog. We used the
tool to check integrity compliance of a VM-system enforc-
ing an XSM/Flask policy at the VMM layer, and multiple
SELinux policies at the VM layer.

We plan to extend the model to represent more complex
VM-systems. In the current model we assume a closed sys-
tem, there is no communication with systems running out-
side of the VMM being analyzed. We will study the problem
of integrating other VM-systems. Also, our model assumes
that a single authority defines the security goals of the sys-
tem, in a composite system that assumption must be elim-
inated and the model must handle (rectify) multiple goals
provided by independent authorities.
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