

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 373 – 378, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Supervised Grid-of-Tries: A Novel Framework for
Classifier Management

Srinivasan T.1, Balakrishnan R., Gangadharan S.A., and Hayawardh V.

1 Assistant Professor, Department of Computer Science and Engineering,
Sri Venkateswara College of Engineering, Sriperumbudur, TN, India 602 105

tsrini@svce.ac.in, bsrealm@msn.com,
{gangadharan, hayawardh}@gmail.com

Abstract. Packet classification is the problem of identifying which one of a set
of rules maintained in a database is best matched by an incoming packet at a
router and taking the action specified by the rule. This is a uniform enabler for
many new network services like firewalls, quality of service and virtual private
networks. These services require dynamic management of rules. While many
algorithms recently proposed can perform packet classification at very high
speeds, rule update times for these are not very fast. This paper presents an
efficient classifier management algorithm, which effectively reduces the rule
update time for the well known Grid-of-Tries classifier. To this end, we have
devised a novel structure called Supervised Grid-of-Tries, which employs
additional tracking pointers embedded into the trie to facilitate efficient rule
updates.

Keywords: Packet classification, routing, grid-of-tries, supervised grid-of-tries.

1 Introduction

Packet classification is the underlying mechanism facilitating network services like
quality of service, virtual private networks (VPN) and firewalls.

Several approaches to packet classification have been proposed. Traditional trie-
based approaches to packet classification include the Hierarchical Trie, Set Pruning
Trie and Grid-of-Tries with filter update complexities of O(dw), O(nd) and O(nw)
respectively, where d denotes the number of dimensions, n the number of nodes and w
the width of each dimension. This does not scale up well on large filter sets. Here, we
present a structure that performs updates efficiently, even for large filter sets.

The paper is organized as follows. Section 2 describes the preliminaries. Section 3
portrays our proposed approach. Experimental results are displayed in Section 4. In
Section 5, guidelines to choose between the schemes discussed in Section 3 are
suggested. Concluding remarks are in Section 6.

2 Preliminaries

Here, the term “ancestor trie” refers to any trie which is under a first dimension node
that is an ancestor of the first dimension node under which the current trie is present.

374 T. Srinivasan et al.

The term “lowest ancestor trie” refers to the most immediate ancestor trie. In addition,
we employ “links” to mean switch pointers and/or storedFilters.

Supervision Tree of Tries: A multi way tree representing the dependency hierarchy
amongst the tries in the second dimension.

Supervision Tree of Nodes: A multi way tree representing the dependency
hierarchy amongst the nodes in the second dimension.

Let A be a first dimension node (Fig. 1a). Let S = {B1, B2, ..., Bn} be the set of nodes
in A's sub tree reachable along paths p1, p2, ..., pn respectively, such that

1. Bi has a trie under it for 1 ≤ i ≤ n
2. No node in path from A to Bi has a trie under it for 1 ≤ i ≤ n
3. pi < pi+1 (lexicographically) for 1 ≤ i ≤ n - 1
4. Bi ≠ A for 1 ≤ i ≤ n

Then, S is the set of first dimension (1d) st children of A and there exists

1. A 1d supervised trie child list begin (1d-st-cl(b)) link from A to B1.
2. A 1d supervised trie child list end (1d-st-cl(e)) link from A to Bn .
3. A 1d supervised sibling next (1d-st-s(n)) link from Bi to B i+1 for 1 ≤ i ≤ n – 1
4. A 1d supervised sibling previous link from B i+1 to Bi for 1 ≤ i ≤ n – 1.

(a)

(b)

Fig. 1. (a) st First dimension child and sibling pointers. (b) st Second dimension child and
sibling pointers.

Let A be a second dimension node (Fig. 1b) reached from the root of its trie along
edges labelled q. Let this trie be under node X in the first dimension. Let S' = { Y1, Y2,
..., Yn } be the set of nodes in X's sub tree reached along paths p1, p2, ..., pn
respectively such that

 Supervised Grid-of-Tries: A Novel Framework for Classifier Management 375

1. Yi has a trie under it that has a node reachable along edges labelled q for 1 ≤ i ≤ n
2. No node from A to Yi has a trie under it which has a node reachable along edges

labelled q for 1 ≤ i ≤ n
3. pi < pi+1 (lexicographically) for 1 ≤ i ≤ n - 1
4. Yi ≠ A for 1 ≤ i ≤ n

Let S = {B1, B2, ..., Bn} be the set of nodes such that Bi is reached from the root of the
trie under Yi along edges labelled q for 1 ≤ i ≤ n. Then, S is the set of second
dimension (2d) st children of A and there exists

1. A 2d supervised trie child list begin (2d-st-cl(b)) link from A to B1.
2. A 2d supervised trie child list end (2d-st-cl(e)) link from A to Bn.
3. A 2d supervised sibling next (2d-st-s(n)) link from Bi to Bi+1 for 1 ≤ i ≤ n–1.
4. A 2d supervised sibling previous (2d-st-s(p)) link from Bi+1 to Bi for 1 ≤ i ≤ n–1

In the next section, we endeavor to present schemes resulting in efficient filter update
for the Grid-of-Tries.

3 Proposed Approach

When inserting a rule into the Grid-of-Tries, there may be a need to set links from
tries further below to the newly inserted trie or to have switch pointers or storedFilters
emanating from the inserted trie itself to a trie above it. Unless we have a systematic
method to track which tries need to be updated as a result of inserting or deleting a
rule, it is tricky to perform incremental updates. We attempt to save on rule update
time by modifying the existing Grid-of-Tries instead of complete reconstruction.
During rule update, the Grid-of-Tries is modified in the first and second dimensions
based on the rule. All other tries require amendment only if their lowest ancestor also
does. Thus, there is a dependency hierarchy present among the tries and nodes. This
hierarchy can be structured in the form of a supervision tree.

3.1 One Dimension Supervised (1ds-SGOT)

1ds-SGOT implements only the supervision tree of tries. In this algorithm, the first
dimension nodes which have tries under them act as representatives of those tries. In
order to insert a rule, we first traverse the first dimension. If a new node was created,
we backtrack and update the supervision tree of tries. Next, the second dimension trie
is traversed. If any new nodes were created in the second dimension, we set links
from the current trie to the ancestor tries and to the current trie from tries in its st sub
tree as necessary.

The worst case time complexity of this algorithm is O(nw). However, occurrence
of the worst case requires that several rare conditions be satisfied. Also, once the
worst case has occurred, it cannot occur again until the rule that caused the worst case
is removed. Memory requirements double for the first dimension in comparison to the
Grid-Of-Tries algorithm due to the four additional pointers (st) that have to be
maintained in addition to the existing four in each node.

376 T. Srinivasan et al.

3.2 Two Dimension Supervised (2ds-SGOT)

Performance can be further improved in certain environments at the expense of
memory. The 2ds-SGOT algorithm implements the supervision trees of nodes in
addition to the supervision tree of tries.

The first dimension is handled as in 1ds-SGOT. In the second dimension, if any
new nodes are created, we set the st sibling and st child node pointers as appropriate.
We then set switch pointers and storedFilters to corresponding nodes in the ancestor
tries and to the current nodes from nodes in the sub tree of this node's supervision tree
of nodes.

In 2ds-SGOT, repeated access of nodes in the second dimension trie of the rule
(that took place in 1ds-SGOT) is avoided. All operations on a node are finished in a
single visit. Also, nodes that do not require an update are skipped. Hence we stand to
gain a reduction in worst case time, while the worst case complexity and conditions
remain unchanged. In order to support the above features, extra processing is
required through the maintenance of st pointers in the second dimension nodes.
Memory requirements for the second dimension are approximately twice that of 1ds-
SGOT whereas the memory consumption of the first dimension is the same. Rule
deletion can be performed along the same lines as insertion. With some modifications,
the same approach can be used to perform supervised rule updates on extended
grid of tries.

4 Experimental Results

The performance of 1ds-SGOT is significantly dependent on the number of tries
visited for updating. However, this is not the case with 2ds-SGOT since, as stated
previously, it avoids the access of nodes which are certain to not require updates.
Besides, the number of times these nodes are visited is one as compared to the
multiple times they are visited in 1ds-SGOT.

We now proceed to analyze and compare the performance of our proposed
algorithms against each other and the Grid-of-Tries method in different environments.
The filter sets we utilize for our analysis are drawn from [4].

Our empirical results confirm that the time consumed by the conventional method
for a rule update increases linearly with the number of rules (as the structure is
completely reconstructed from the beginning with every new rule added) in the trie
whereas it remains nearly constant for 1ds-SGOT.

2ds-SGOT performs best in firewalls, which are most specific (and hence have the
most number of tries), which is in conformance with the above deductions. Also, as
expected, 1ds-SGOT performs better than 2ds-SGOT in the least specific environment
of access control lists.

Table 2 shows the average update time for our algorithms on the various filter
sets [6]. It is clear from the table that, as the specificity increases, the 2ds-SGOT
algorithm performs better than the 1ds-SGOT algorithm.

 Supervised Grid-of-Tries: A Novel Framework for Classifier Management 377

Fig. 2. Rule insertion times of the algorithms for sample filter set FW1

Table 2. Performance Comparison. Filter sets taken from [4].

Filter set 1ds-SGOT (10-6 s) 2ds-SGOT (10-6 s)
ACL1 41 61
ACL1_100 48 133
ACL1_1K 47 76
ACL1_5K 53 68
ACL1_10K 63 98
IPC1 69 51
IPC1_100 47 129
IPC1_1K 57 100
IPC1_5K 88 67
IPC1_10K 155 74
FW1 45 33
FW1_100 28 39
FW1_1K 109 38
FW1_5K 445 80
FW1_10K 1054 120

5 Selection of Optimal Scheme

We now discuss metrics that help in selecting the optimal scheme.

Specificity: We infer from the experimental results that as the specificity of the
filter sets increases, the relative performance of 2ds-SGOT improves over 1ds-SGOT
due to the increased number of tries. Thus it would be more advantageous to use 2ds-
SGOT in environments like firewalls. Conversely, 1ds-SGOT should be preferred in
environments like access control lists.

GOT
1ds-SGOT
2ds-SGOT

Time (10-6s)

Rules

378 T. Srinivasan et al.

Scalability: With the impending transition to IPv6, the relative performance benefit
for 2ds-SGOT over 1ds-SGOT would be amplified due to the significant increase in
node accesses for rule updates. With increase in the number of rules, 2ds-SGOT
performs better than 1ds-SGOT.

Reliability: In situations where the memory consumption of 2ds-SGOT is about to
exceed the available memory, there can be a seamless transition to 1ds-SGOT which
will enable the router to support as many rules as can 1ds-SGOT while at the same
time providing the performance of 2ds-SGOT until no longer possible.

6 Conclusion

We have devised a novel method for efficient dynamic filter update for the Grid-of-
Tries classifier. This is achieved by maintaining a supervision trees to track those
parts of the trie which require updates. Through our experimentation, it is shown that
our two techniques have nearly constant filter update times, whereas the conventional
method has an update time which increases linearly with the number of filters.

References

1. V. Srinivasan, S. Suri, G. Varghese and M. Waldvogel. “Fast and scalable layer four
switching,” Proceedings of ACM Sigcomm, pages 203-14, September 1998.

2. T. Srinivasan, S. Prasad, B. Prakash, “Dynamic Packet Classification Algorithm using
Multi-level Trie”, Enformatika, Volume 3, pp.104-107, Transactions on Engineering,
Computing and Technology, Dec 2004 (ISSN 1305-5313).

3. T. Srinivasan, Dhanasekar, M. Nivedita, B. Divya, Azeezunnisa Shakir “Scalable and
Parallel Aggregated Bit Vector packet classification using prefix computation model”, To
appear in the proceedings of IEEE International Symposium on Parallel Computing in
Electrical Engineering - PARELEC 2006, Bialystok, Poland, September 2006.

4. David E. Taylor, Jonathan S. Turner, “ClassBench: A Packet Classification Benchmark”,
IEEE INFOCOM 2005

5. T. Srinivasan, Azeezunnisa Shakir, Vijayalakshmi "PAFBV: A Novel Parallel Aggregated
and Folded Bit Vector Packet Classification Scheme for IPv6 Routers", to appear in the
proceedings of 6th IEEE International Conference on Computer and Information
Technology - CIT 2006, IEEE Computer Society , Seoul, Korea, September 2006

6. Filter sets at http://www.arl.wustl.edu/˜det3/ClassBench/

	Introduction
	Preliminaries
	Proposed Approach
	One Dimension Supervised (1ds-SGOT)
	Two Dimension Supervised (2ds-SGOT)

	Experimental Results
	Selection of Optimal Scheme
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

