
A Scalable Parallelization of All-Pairs Shortest Path Algorithm for a High
Performance Cluster Environment

T. Srinivasan∗, Balakrishnan R., Gangadharan S. A. and Hayawardh V
∗Assistant Professor

Department of Computer Science and Engineering
Sri Venkateswara College of Engineering, Pennalur, Sriperambudur 602105, TN, India
tsrini1969@gmail.com, bsrealm@msn.com, {gangadharan, hayawardh}@gmail.com

Abstract

We present a parallelization of the Floyd-Warshall all
pairs shortest path algorithm for a distributed environment.
A lot of versions of the Floyd-Warshall algorithm have
been proposed for a uniprocessor environment, optimizing
cache performance and register usage. However, in a dis-
tributed environment, communication costs between nodes
have to be taken into consideration. We present a novel
algorithm, Phased Floyd-Warshall, for a distributed envi-
ronment, which optimally overlaps computation and com-
munication. Our algorithm is compared with a register op-
timized version of the blocked all pairs shortest path algo-
rithm [6, 4, 1] which is adapted for a distributed environ-
ment. We report speedups of 2.8 in a 16-node cluster and
1.2 in a 32-node cluster for a matrix size of 4096.

1. Introduction

Supercomputers today are moving towards the paradigm
of a large number of simple interconneced computers from
the olden day mainframes. Distributed computing is sure
to play a vital role in the future. Today, clusters of com-
puters are used to solve huge number-crunching problems.
The main challenge in effectively using a cluster of com-
puters to solve a problem is in extracting the parallelism
present in the problem. Developing parallel versions of ba-
sic algorithms like matrix multiplication and graph theoret-
ical algorithms are of prime importance because they occur
as part of bigger problems. The Floyd-Warshall algorithm
[2, 7] is an algorithm for solving the all-pairs shortest path
problem on weighted, directed graphs in cubic time. It is
a very simple yet powerful algorithm. It has an abundance
of uses in a large variety of fields, and is commonly found
as a sub-problem in solving larger problems. Examples in-
clude transitive closure, finding a regular expression denot-

ing the regular language accepted by a finite automaton, in-
version of real matrices and optimal routing, among others.
A lot of versions of the Floyd-Warshall algorithm have been
proposed for a uniprocessor environment, optimizing cache
performance and register usage.

Sahni et al [6] present a blocked version of the all-pairs
shortest path algorithm, where they reorder computations
to optimize cache performance. A tiled implementation
with recursion to further optimize cache performance is pre-
sented in Park et al [4]. However, this blocked algorithm
when adapted for a distributed environment accrues signifi-
cant communication costs.

In this paper, we present Phased Floyd-Warshall, a novel
algorithm for distributed environments, which optimally
overlaps computation and communication.

We present experimental results comparing our algo-
rithm with the blocked version. We report speedups of 2.8
in a 16-node cluster and 1.2 in a 32-node cluster for a matrix
size of 4096.

The rest of the paper is organized as follows. Section
2 formally states the Floyd-Warshall all pairs shortest path
algorithm, introduces the various parallel versions. Section
3 provides the motivation and major ideas behind our al-
gorithm. Section 4 presents our algorithm. In section 5,
we analyze the complexity of our algorithm, and compare
it with the blocked version. Experimental results compar-
ing our algorithm with the blocked algorithm is presented
in section 6. We state our conclusions in section 7.

2. Preliminaries

2.1. The Floyd-Warshall Algorithm

We start with a brief description of the serial algorithm
(Fig. 1).

Input: Adjacency matrix of n nodes a (with dimensions
n ∗ n), with ai,j representing weight of the direct path from

978-1-4244-1890-9/07/$25.00 ©2007 IEEE

Figure 1. The Basic Serial Floyd-Warshall Al-
gorithm

node i to node j.
Output: Matrix a (with dimensions n ∗ n), with ai,j rep-

resenting the shortest path between node i to node j, and ∞
if no such path exists.

In lines 6 and 7, we compare the current length of the
path between i and j and the path from i to j through k. We
then update the path length to be the minimum of those two
paths. This is essentially a dynamic programming formula-
tion.

The operation of checking the minimum and updating
the path distance to that value is known as relaxation. In
specific, lines 6, 7 shows the path between node i to node j
being relaxed with respect to node k.

The working of the algorithm can be described as fol-
lows: at the end of the kth iteration, the path from any
node to any other node is relaxed with respect to the ver-
tices 1, 2, . . . , k.

So, at the end of the n iterations, all nodes are relaxed
with respect to nodes 1, 2, . . . , n. Hence, we have found the
all-pairs shortest path.

Let us represent the path ai,j relaxed with respect to ver-
tices 1, 2, . . . , k by dk

i,j . Hence, d0
i,j would represent the

state of the initial input. In this representation, the relax-
ation operation becomes

dk
i,j = min(dk−1

i,k , dk−1
i,k + dk−1

k,j) (1)

Hence, we can view the problem as the promotion of all
elements from state 0 to state n. As can be easily observed,
this basic serial algorithm runs in time O(n3).

It is important to note that though the three loops in the
algorithm may look very similar to matrix multiplication, it
is much more challenging to parallelize due to the exten-
sive dependencies caused by the relaxation operation. The
loop invariant is that at the start of the (k + 1)th loop, all
nodes are relaxed with respect to the nodes 1, 2, . . . , k. This
eliminates an approach like divide and conquer

2.2. Blocked Version

Here, we describe the blocked version of Floyd War-
shall [6, 4]. We begin by defining a few terms. The ma-
trix is divided into blocks. Each block has a dimension of
b∗ b. Hence, the entire matrix is partitioned into N2 blocks,
where N = n/b.

Let Ai,j be the (i, j)th block.

Ai,j = {ax,y : (i−1)∗b < x ≤ i∗b; (j−1)∗b < y ≤ j∗b}
(2)

In the kth iteration:

• Ak,k is the pivot block.

• Other blocks in the kth row are the pivot row blocks.

• Other blocks in the kth column are the pivot column
blocks.

• All other blocks are non-pivot blocks.

Block Ai,j when in state k has been relaxed with respect to
nodes 1, 2, . . . , b∗k. Dk

i,j is used to represent the block Ai,j

in state k. It is similar to dk
i,j , except that the latter is for a

single element ai,j relaxed with respect to nodes 1, 2, . . . , k.
The dependencies arising from the blocking scheme are

as follows:

• The pivot block requires only elements from itself to
perform the current relaxation.

• The pivot row and column blocks require elements
both from themselves and the pivot block to proceed
with their relaxation.

• All other blocks require elements from two other
blocks, apart from themselves, to perform relaxation.

We define the set Ek
i,j as the set of external blocks in the

appropriate states required to relax block Ai,j during the
kth iteration.

Ek
i,j =

∅; i = j = k
{Dk

i,k}; i = k, j 6= k

{Dk
k,j}; i 6= k, j = k

{Dk
i,k, Dk

k,j}; i 6= k, j 6= k

We define the relaxation operation which promotes the
block Ai,j from the state k − 1 to state k using external
block set Ek

i,j as:

Dk
i,j = relax(Dk−1

i,j , Ek
i,j) (3)

Hence, we can view the problem as the promotion of all
blocks from state 0 to state N . The algorithm is in Fig. 2.

2.3. A Simple Parallel Version

We now move on to the straightforward parallel version.
Each cluster node is assigned an equal number of contigu-
ous rows in the adjacency matrix. Thus, if there are p cluster
nodes and n rows, each node owns n/p rows.

The algorithm is as follows.
We note that this approach blocks at the beginning of

every iteration for the broadcast to complete.

Figure 2. Serial Blocked Version

Figure 3. Simple Parallel Version
2.4. A Parallel Blocked Version

We now state the adaptation of the blocked all pairs
shortest path algorithm for a distributed environment, as in
[1]. This follows directly from the basic blocked algorithm
[6, 4]. The parallel blocked version provides greater per-
formance than the simple parallel version by allowing more
overlap of computation and communication. In this algo-
rithm, if there are p cluster nodes, then block size b = n/p.
Each cluster node owns one row of blocks.

Figure 4. Parallel Blocked Version

In our discussions, for ease of understanding, we use se-
rial numbers running from 1 to N (as opposed to using 0 to
N1). Hence, if g%h is 0, it has to be taken as h. p is the
total number of nodes and the rth node is known as Pr.

3. Motivations for the Phased Algorithm

There are several inefficient aspects to deploying the
blocked algorithm in a distributed environment (where com-
munication costs are important), as opposed to a uniproces-
sor environment:

• In every iteration, the node holding the pivot has to dis-
tribute the pivot row amongst other nodes. Here, one
sender has to send specific blocks to each and every re-
ceiver. Hence, the receivers will be idle until their turn
arrives (receiver receives their respective block).

• The pivot node is highly underutilized and remains idle
for most part of the iteration.

• There are as many broadcasts in an iteration as there
are nodes.

We aim to propose an efficient algorithm for a distributed
environment by using the following design goals:

• To complete the transfer of blocks required for the next
iteration during the current iteration (in parallel with
the ongoing processing work) to the maximum extent
possible, so that there is no idle time in this regard.
Specifically, we would want the data for the xth itera-
tion to be ready at the beginning of the (x − 1)th iter-
ation. This way, we can perform transmission of this
data during the computational work in the (x − 1)th

iteration. If this is not achievable, it should at least
be possible to transmit after performing some mini-
mum computation work in the (x − 1)th iteration. We
achieve this by designing iterations such that no iter-
ation requires data that is computed during the same
iteration.

• To distribute evenly the workload amongst the nodes
during a given iteration to the maximum extent possi-
ble. Our algorithm has loops where the amount of data
worked on in every iteration is either increasing (phase
2) or decreasing (phase 1). We balance the workload
by interleaving the iterations of different loops. This is
detailed in a later section.

• To prefer a single large transmission as opposed to
multiple small transmissions to the maximum extent
possible. This is achieved by designing the algorithm
such that pieces of work done by a node during pre-
vious iterations will represent all the external data re-
quired by (one or many) nodes during a particular it-
eration. Hence, the external data for iteration will ar-
rive from a single source rather than parts arriving from
multiple sources.

We now formally establish the states in which the blocks
will be required as external blocks to segregate the work
into modules efficiently.

Theorem 3.1. In performing relaxations, we require the
block Aa,b in exactly two states, first when it is in state
min(a, b) and next when it is in state max(a, b).

Proof. Every block Aa,b belongs to two sets of external
block sets , E1 and E2, where E1 = {Ea

i,b}; 1 ≤ i ≤ N

and E2 = {Eb
a,j}; 1 ≤ j ≤ N .

Hence, Aa,b will be used as an external block only in
the corresponding relaxations. In E1, Aa,b is present in the
state a, and in E2 in state b. Thus, we require the block
Aa,b as an external block in exactly two states, once when
it is in state a and once when it is in state b. Obviously,
one of a, b is min(a, b) and the other is max(a, b). Since
we can only sequentially promote Aa,b from state 0 to state
N , the state min(a, b) becomes available before the state
max(a, b).

We note that as a special case, when a = b, the two
states merge into one. In the light of the above theorem, we
partition the algorithm into three phases:

• Phase 1: Promotion of blocks Aa,b from state 0 to state
min(a, b).

• Phase 2: Promotion of blocks Aa,b from state
min(a, b) to state max(a, b).

• Phase 3: Promotion of blocks Aa,b from state
max(a, b) to state N .

For cases where a = b, we make the task of promoting the
block to state a a part of the first phase. Thus, there is no
work to be done on those blocks in the second phase.

4. Phased Floyd Warshall

4.1. The Algorithm

We first define sets that are used in the algorithm.

S1(x) =

{

Ai,x;x < i ≤ N
Ax,j ;x < j ≤ N

S2(x) =

{

Ai,x;x ≤ i < N
Ax,j ;x ≤ j < N

Thus, by definition, S2(1) is ∅.
The brief algorithm for various phases is given in Fig. 5.

4.2. Proof of Correctness

4.2.1. Phase 1

Proof. We prove correctness by induction. Let x represent
the current iteration number.

x = 1: Let us consider the iteration x = 1. E1
1,1 =

∅. Hence promotion of the pivot block A1,1 from state 0
to state 1 does not violate dependencies. External blocks
required for promoting blocks of S1(1) from state 0 to state

Figure 5. Short Algorithm for the Phases
1 is given by {E1

1,2 ∪ E1
1,3 ∪ . . . E1

1,2} ∪ {E1
1,2 ∪ E1

1,3 ∪
. . . E1

1,2}, which is nothing but E1
1,1.

This is available from the previous step. Hence the itera-
tion with x = 1 has been shown to conform to dependency
requirements.

x = u: Assuming that iteration with x = u − 1, (u >
1) has completed, we now prove that iteration with x =
u can be carried out without violating dependencies. For
performing the pivot block relaxation Au,u, we need E1

u,u∪
E2

u,u ∪ . . . ∪ Eu
u,u = {D1

u,1 ∪ D1
1,u} ∪ {D2

u,2 ∪ D2
2,u} ∪

. . . ∪ {Du−1
u,u−1 ∪ Du−1

u−1,u}. As can be seen, for 1 ≤ y < u,
Ey

u,u is available in S1(y) and is in required state at the end
of the iteration x = y. By hypothesis, those iterations have
all completed. Hence the pivot block can be relaxed without
violation of dependency requirements. Consider an element
Ai,u of S1(u) to promote it from state 0 to u, the external
blocks required are E1

i,u ∪ E2
i,u ∪ . . . ∪ Eu

i,u = {D1
i,1 ∪

D1
1,u}∪ {D2

i,2 ∪D2
2,u}∪ . . .∪{Du−1

i,u−1 ∪Du−1
u−1,u}∪Du

u,u.
As can be seen, for 1 ≤ y < u, Ey

i,u is available in
S1(y) and is in required state at the end of iteration with
x = y. Du

u,u is available from the previous step. Hence,
dependencies of elements of the form Ai,u of S1(u) are
satisfied.

Similarly dependencies are also satisfied for any element

from S1(u) of form Au,j . Hence it is possible to complete
the iteration with x = u.

4.2.2. Phase 2

Proof. As above, we prove correctness by induction. Let x
represent the iteration number. x = 2: Let us consider the
iteration x = 2. S2(2) = A1,2UA2,1. min(i, j) for both
A1,2 and A2,1 is 1. External blocks required to promote
them from state 1 to state 2 is given by E2

1,2 ∪E2
2,1 = D2

2,2.
D2

2,2 is available as all blocks Ai,i are in state i at the
end of phase 1 iteration with x = i. Hence the iteration
x = 2 been shown to conform to dependency requirements.
x = u: Assuming that iteration with x = u − 1, (u > 2)
has completed, we now prove that the iteration with x = u
can be carried out without dependency violations. Consider
an element of form Ai,u of S2(u). To promote it from state
i to state u, the external blocks required are Ei+1

i,u ∪Ei+2
i,u ∪

. . .∪Eu
i,u = {Di+1

i,i+1∪Di+1
i+1,u}∪{Di+2

i,i+2∪Di+2
i+2,u}∪ . . .∪

{Du−1
i,u−1 ∪ Di

u−1,u−1} ∪ Du
u,u.

As can be seen, for i < y < u, Dy
i,y is available in

S2(y) and is in the required state at the end of iteration with
x = y of phase 2. Dy

y,u is available in S1(y) and is also in
required state at the end of iteration x = y in phase 1. Du

u,u

is available in appropriate state at the end of iteration x = u
of phase 1. Hence, dependencies of elements of the form
Ai,u of S2(u) are satisfied. Similarly dependencies are also
satisfied for any element from S2(u) of form Au,j . Hence
it is possible to complete the iteration with x = u.

4.2.3. Phase 3

Proof. In phase 3, we promote all blocks Ai,j from state
max(i, j) to N . In phase 3, the following external blocks
are required to promote the block from state max(i, j) to
N :

E
max(i,j)+1
i,j ∪ E

max(i,j)+2
i,j ∪ . . . ∪ EN−1

i,j ∪ EN
i,j =

{D
max(i,j)+1
i,max(i,j)+1 ∪ D

max(i,j)+1
max(i,j)+1,j

}∪

{D
max(i,j)+2
i,max(i,j)+2 ∪ D

max(i,j)+2
max(i,j)+2,j

} ∪ . . .∪

{DN
i,N ∪ DN

N,j}

As can be seen, all external blocks Ai′,j′ are required in
state max(i′, j′). As they are already in that state at the end
of phase 2, it is possible to process blocks in phase 3 in any
sequence. It is to be remembered that being in a state higher
than required is permissible.

4.2.4. Interleaving of phases 1 and 2

From the proof of correctness, it is clear that phase 1 it-
eration depends only on previous phase 1 iterations. Hence

the interlacing will not affect phase 1 processing. From the
proof of correctness, it is clear that a phase 2 iteration de-
pends only on phase 2 iterations with x < u and phase 1
iteration with x = u. As for a given iteration we perform
phase 1 processing before phase 2, the dependencies are not
violated.

4.3. The Distributed Algorithm

As stated earlier, the data distribution and task allocation
is done in a manner so as to keep up the design goals as
much as possible. The data distribution is done such that
S2(x) ∪ Ax,x is present at node x%p.

4.3.1. Phase 1

For every iteration x = u of phase 1, a cluster node pro-
cesses all blocks that it owns. The subset of S1(x) owned
by the rth node is given by

S1(x) =

{

Ai,x;x < i ≤ N, i%p = r
Ax,j ;x < j ≤ N, j%p = r

On computing the required external blocks, it can be seen
that only non locally available external blocks for iteration
x = u are S2(u) ∪ Au,u. All these blocks are available in
the node u%p. However, the blocks will reach the required
states only in the iteration x = u.To achieve the design goal
of transmitting the external requirements of the x = u iter-
ation during the x = u− 1 iteration, a look ahead operation
can be performed as shown in Fig. 6.

Figure 6. Look Ahead Operation

The correctness of performing this procedure at the be-
ginning of the iteration x = u − 1 can be easily estab-
lished by checking the sequence of operations against ex-
ternal block requirements. If this function were invoked at
the beginning of the x = u − 1 iteration, S2(u) ∪ Au,u

will reach the state in which they are ready for transmis-
sion. Hence non local data required during iteration x = u
can be transmitted during iteration x = u − 1.

4.3.2. Phase 2

The phase 1 work load decreases with every iteration
and the phase 2 work load increases with every iteration.
Hence, in order to ensure that enough time is available for
the broadcast of S1(u) ∪ Au,u to complete during the iter-
ation x = u − 1, we interleave iterations of phases 1 and 2.
This has been proven possible in Section 4.2.4.

The broadcasts of S2(u)∪Au,u during the x = u−1 iter-
ation has made available the entire S2(u) to all nodes in the
up to date state. This makes it easy to distribute the work-
load of phase 2 such that all external blocks required are
locally available and workload distribution is almost even.
We define the subset of S2(x) assigned to the node r for
processing as:

S2(x) =

{

Ai,x;x ≤ i < N, i%p = r
Ax,j ;x ≤ j < N, j%p = r

On checking the external block requirements, it can be seen
that all are available locally in the appropriate state at the be-
ginning of the iteration. The combined algorithms of phases
1 and 2 are stated in Fig. 7, 8.

Figure 7. Phase 1 and 2 - Distributed Algo-
rithm

4.3.3. Phase 3

As has been established in the proof of correctness, we
can process blocks in phase 3 in any order. We assign the

Figure 8. Phase 1 and 2 - Distributed Algo-
rithm - Continued

processing of blocks in tth row to cluster node t%p. The
lower triangle is the set of blocks {Ai,j : j < i ≤ N}. Note
that we do not include the diagonal blocks in the lower tri-
angle. We define the subset of the lower triangle initially
available with the rth cluster node as: LTr = {Ai,j : j <
i ≤ N ; j%p = r}. We now establish what processing can
be done at a particular node when a particular subset of the
lower triangle (which may come from another node) is lo-
cally available to it. Let us assume LTs is available at the
rth cluster node. Based on external block requirements, it
is seen that we can process elements of the set S3(r, s),
where S3(x, y) = {Ai,j : i%p = x, j%p = y}. Thus, all
cluster nodes will need all lower triangle subsets to finish
phase 3 processing of rows assigned to them. To make the
entire lower triangle available to all cluster nodes, we trans-
mit data in a ring-like manner. Formally, a cluster node Pr

keeps receiving data from cluster node P(r+1)%p and keeps
sending data to cluster node P(r−1)%p. The sequence of
processing for cluster node Pr in phase 3 proceeds as in
Fig. 9:

Figure 9. Overview of Phase 3 - Distributed
Algorithm

5. Complexity Analysis

As in [1], we perform register level optimizations that
provide a 2.5 fold speedup in relaxing non-pivot blocks in
the blocked Floyd Warshall algorithm. This is made pos-
sible by making the k loop the innermost loop and thereby
reducing the number of loads and stores. This same opti-
mization can and has been applied in our algorithm for non-
pivot blocks (that is, when the elements ai,j , ai,k and ak,j

all come from different blocks). Let:

• CB1 be the cost of relaxing one element in a pivot
block, pivot row block or pivot column block.

• CB2 be the cost of relaxing one element in a non-pivot
block.

• Bl be the broadcast latency and Bb be the inverse
broadcast bandwidth.

• Sl be the point to point latency and Sb be the inverse
point to point bandwidth.

For simplicity, we have assumed that b is picked such
that N is a multiple of p and derived the complexity. Af-
ter adding computation and communication costs for all
phases, the overall complexity (computation and commu-
nication cost) for the rth cluster node comes out to be

totalcostphased(n, p, b, r) =
(

n

12pb

)

(12n2 − 21nb − 6rnb + 3pnb + 3p2b2 + 3pb2

− 18prb2 − 6rb2 + 18r2b2 + 12b2)CB2+
(

n

p

)

(2n − b) CB1 +
(n

b

)

Bl + n2Bb + (p − 1)Sl+

(

n

2p

)

(np + 2rb − n − 2pb) Sb (4)

Figure 10. Phase 3 - Distributed Algorithm
We now compare our algorithm with the optimized im-
plementation [1] of parallel blocked Floyd-Warshall. In
this implementation of blocked Floyd-Warshall, one clus-
ter node owns an entire row of blocks. The algorithm has
the following complexity:

totalcostblocked(n, p, b) =
(

n3

p3

)

(2p − 1)CB1 +

(

n3

p3

)

(p2 − 2p − 1) ∗ CB2+

p2Bl + n2Bb + p(p − 1)Sl +

(

n2

p

)

(p − 1)Sb (5)

We note that block size for the optimized parallel blocked
Floyd-Warshall algorithm is a function of n and p (b =
n/p) but is variable in the Phased Floyd-Warshall algo-
rithm. Comparing the complexities of the two algorithms,
we note the following:

• The total amount of point to point send data (Sb coeffi-
cient) in the proposed algorithm is lesser as compared
to the blocked version.

• The number of point to point sends initiated (Sl coeffi-
cient) in the proposed algorithm is lesser as compared
to the blocked version.

• The amount of broadcast data (Bb coefficient) is the
same for both algorithms.

• The number of broadcasts initiated (Bl coefficient)
is more for the Phased algorithm as compared to the
blocked version (as usually, n/b > p2).

Hence, the proposed version scores better in the number of
point to point sends initiated and the total point to point data
sent. The only factor in which the blocked version scores
better is in the number of broadcasts initiated.

However, the complexity coefficients alone do not con-
vey the complete picture. In the blocked version, during
every iteration, each cluster node cannot complete its work
until it has received the broadcasts of the pivot row blocks.
In the Phased algorithm, all communication during an iter-
ation (phases 1 and 2, or 3) is in preparation for the next
iteration and therefore the current iteration need not block.

In one iteration of the blocked parallel Floyd-Warshall,
each cluster node broadcasts its portion of the pivot row.
Hence, there are multiple broadcasts happening in the same
iteration. In the Phased algorithm, in the main loop of
phase1and2() (Fig. 8), only one broadcast (of S2(x +
1)∪ {Ax+1,x+1}) is taking place in the xth iteration. In ev-
ery iteration of phase3() (Fig. 10), every cluster node is
involved in exactly one point to point send and one point to
point receive.

During every iteration of the blocked version, one cluster
node is underutilized as it has to relax only one pivot row
block and the pivot block for the next iteration. The load
distribution is not that uneven in the Phased Floyd-Warshall
Algorithm.

6. Experimental Results

Our experiments were carried out on a 32 node Beowulf
cluster. Each machine was powered by a 200 MHz Pentium
2 processor with 128MB RAM. We used the LAM/MPI
[3, 5] environment and the programs were written in C++.
Duration was measured ignoring the time to distribute the
input adjacency matrix and agglomerate the shortest path
cost matrix.

We present the speedup (Fig. 11) of the phased FW with
respect to the blocked FW algorithm. Due to the nature of
distribution of work, some processors will have q and others
(q−1) blocks to work on. Hence, to minimize the difference
in workload, we keep the block size b at a minimum. We
have found b = 4 to work best in our experiments.

Non-blocking broadcast MPI_Ibcast is not imple-
mented for i386 architecture. We have used MPI_Bcast.

Figure 11. Speedup of Phased Floyd-
Warshall Algorithm over the Blocked Algo-
rithm

Hence, there is a blocking broadcast at the end of every iter-
ation of phase1and2(), which could have been done in
parallel with computation as per the algorithm. It is believed
that there will be a significant performance improvement if
non-blocking broadcast is made possible (it is currently pos-
sible in the IBM architecture).

It is seen that for any number of cluster nodes, the
speedup exceeds 1 beyond a particular problem size.

7. Conclusion

We presented a new parallel algorithm for a distributed
environment for the all pairs shortest path problem which
aims to optimize the overlap between computation and
communication and uniformly distribute computation load.
A comparison with the parallel blocked algorithm shows
speedups greater than 1.

References

[1] B. Diament and A. Ferencz. Comparison of parallel apsp al-
gorithms.

[2] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345, 1962.

[3] http://www.llnl.gov/computing/tutorials/mpi/. Message pass-
ing interface (mpi).

[4] M. Penner. Optimizing graph algorithms for improved cache
performance. IEEE Trans. Parallel Distrib. Syst., 15(9):769–
782, 2004. Student Member-Joon-Sang Park and Fellow-
Viktor K. Prasanna.

[5] J. M. Squyres and A. Lumsdaine. A component architec-
ture for LAM/MPI. In Proceedings, Euro PVM/MPI, October
2003.

[6] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya. A
blocked all-pairs shortest-path algorithm. In SWAT ’00: Pro-
ceedings of the 7th Scandinavian Workshop on Algorithm
Theory, pages 419–432, London, UK, 2000. Springer-Verlag.

[7] S. Warshall. A theorem on boolean matrices. J. ACM,
9(1):11–12, 1962.

