
Seeding Clouds with Trust Anchors

Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar
Trent Jaeger and Patrick McDaniel

Systems and Internet Infrastructure Security Laboratory
Pennsylvania State University

jschiffm, tmmoyer, huv101, tjaeger, mcdaniel@cse.psu.edu

ABSTRACT
Customers with security-critical data processing needs are begin-
ning to push back strongly against using cloud computing. Cloud
vendors run their computations upon cloud provided VM systems,
but customers are worried such host systems may not be able to pro-
tect themselves from attack, ensure isolation of customer process-
ing, or load customer processing correctly. To provide assurance
of data processing protection in clouds to customers, we advocate
methods to improve cloud transparency using hardware-based at-
testation mechanisms. We find that the centralized management of
cloud data centers is ideal for attestation frameworks, enabling the
development of a practical approach for customers to trust in the
cloud platform. Specifically, we propose a cloud verifier service
that generates integrity proofs for customers to verify the integrity
and access control enforcement abilities of the cloud platform that
protect the integrity of customer’s application VMs in IaaS clouds.
While a cloud-wide verifier service could present a significant sys-
tem bottleneck, we demonstrate that aggregating proofs enables
significant overhead reductions. As a result, transparency of data
security protection can be verified at cloud-scale.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed Systems

General Terms
Security

1. INTRODUCTION
Cloud computing has become the buzzword du jour for IT pro-

fessionals and researchers alike. The cloud’s on-demand provi-
sioning of computing resources has ushered a shift in application
deployment. Developers, no longer required to build and maintain
applications on expensive in-house infrastructures, may now lever-
age publicly accessible, multi-tenant systems administered by third
parties to host their code and data. The promise of reduced cost
and maintenance has already excited many companies, as a recent
poll found over 25% of surveyed business are interested in moving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0089-6/10/10 ...$10.00.

their services to public cloud platforms [8]. While several cloud
deployment models have evolved into the marketplace, Infrastruc-
ture as a Service (IaaS) clouds appear to be the most interesting to
large corporations, as they offer VM hosting as a primary service
enabling hosting of complex application designs.

However, recent scares of massive data loss have discouraged
more rapid adoption as indicated by the fact many companies be-
lieve security and privacy are the top concerns when deciding to
adopt clouds [10]. What is needed is a way to increase the trans-
parency of clouds so that users can build trust in these public ser-
vices. The most obvious issue cloud customers face is ensuring
that their data security requirements are satisfied while using the
cloud for simple tasks like storage or more complex cloud pro-
cessing. To ensure these requirements are met, a cloud customer
must be able to verify that the cloud’s integrity has not been com-
promised and that it is functioning within the parameters neces-
sary to satisfy the customers security needs. By integrity, we mean
the classical notions of integrity used in models like Biba [2] and
Clark-Wilson [5], where trusted entities and data must come from
high integrity sources and depend only on similar integrity level
inputs or higher (discussed further in Section 3.1). In this paper,
we identify three main challenges that cloud providers face when
generating proofs that can placate a user’s concerns: 1) that cloud
vendors provide a proof of data security protection of their hosts
and customer processing; 2) that such proofs have a clear mean-
ing to cloud customers; and 3) that such proofs can be generated
effectively and efficiently in a cloud computing environment.

First, the lack of physical control (by customers) necessitates
greater scrutiny of cloud hosts than traditional in-house deploy-
ments. While cloud providers use SLAs, armed guards around
their data centers, and non-specific claims of “hardened systems”,
no cloud offers clear proofs of their hosting platform’s runtime
integrity. Second, clouds by their nature support multi-tenancy,
which allows other customers to run their code on the same phys-
ical machine. Since cloud applications are hosted on a complex
software stack consisting of a virtual machine monitor (VMM),
host OS, and potentially several guest VMs, a host incapable of
enforcing noninterference between VMs opens an avenue for mali-
cious VMs to obtain leaked data or compromise the entire system.
It is for these reasons that cloud customers require a proof that their
VMs are hosted on high integrity systems and that their VMs have
been loaded in a secure manner.

The second challenge is ensuring cloud customers can correctly
assess integrity via attestations produced by the cloud. Approaches
like integrity measurement [25, 23, 19] allow systems to record
measurement of the code and data on a system, but it is up to the
remote verifier to determine if that combination of measurements
results in a secure system. This inherently difficult challenge is

43

further complicated by a cloud that may use proprietary or unver-
ified code, configure systems in unusual ways, and lack necessary
access control mechanisms. Instead of complex low-level mea-
surements, we propose measuring enforcement of properties. In
the past, researchers have proposed property-based attestation [16],
which convert a set of measurements into higher-level properties.
However, this does not obviate the need for fine-grained measure-
ments. We instead advocate measuring enforcement of properties
by measuring an enforcer and policy defining the property, where
possible. A variety of enforcement is used in integrity measure-
ment already, from data [23] and access control [11], to code load-
ing [24], but we make this a first class concept.

Finally, deploying a practical cloud verification system is key to
the adoption of current cloud frameworks. Current cloud architec-
tures provide some benefits for integrity measurement, such as a
centralized deployment for a PKI, integrity measurement devices,
and physical security over machines, but there are some key chal-
lenges as well. First, cloud architectures are largely closed to exter-
nal inspection. Recent work has examined the use of fully trusted
third parties to audit clouds [20], but this still limits the cloud’s
transparency to the user. Second, a cloud may have many customers
requesting attestations, so the benefits of centralization may be off-
set by the bottleneck of responding to attestation requests from an
inherently slow (about 1 second per request) trusted computing de-
vices. Any cloud-based integrity measurement mechanism must
enable the generation of proofs indirectly with good scalability.

In this paper, we propose a centralized verification service called
the cloud verifier (CV), which produces attestations of a customer’s
cloud instances that can be used to verify both the integrity of a cus-
tomer’s VM and the system hosting it. A CV is a service residing
in the cloud that monitors the state of the cloud platform and user
VMs. The cloud verifier enables indirect verification of its hosts
by vouching for the enforcement of properties on them. Using this
approach, cloud customers can verify that the cloud verifier sat-
isfies their integrity property requirements and that the properties
the cloud verifier vouches for being enforced on its hosts satisfies
the customer’s properties for those components as well. Customers
can then leverage their trust in the cloud hosts to verify their own
application VMs’ data security.

In Section 2, we outline the expectations that customers have of
cloud systems that run their security-critical applications. In Sec-
tion 3, we detail what is required to verify the integrity of a remote
component in general and extend this approach into a protocol that
enables a cloud verifier to generate such integrity proofs for cloud
applications. In Section 4, we outline a prototype implementation
of our cloud verifier, and in Section 5, we examine performance
issues in building a scalable cloud verifier service.

2. TRUSTED CLOUD EXPECTATIONS
We now consider a scenario to explore the requirements that

customers have for running their security-critical applications on
the cloud. Consider the typical computer science graduate student,
Alice, who uses an integrity-verifying cloud. She uses the cloud
for a variety of applications including a research project distributed
across several VMs, a personal web server VM to host her home-
page, and a code repository VM to store and compile her coding
projects. Alice is computer-savvy and well informed, so she is
concerned about protecting the secrecy of her data on the cloud
as well as ensuring her VMs are not compromised by viruses or
rootkits. She expects the cloud hosting her code and data to prove
its own integrity and that her security requirements are being en-
forced over the lifetime of her applications’ execution. Moreover,
Alice may want to perform sanity checks on her VMs and data, but

is concerned these checks are futile if the hosting system is com-
promised. To satisfy Alice, the cloud must be configured to clearly
demonstrate its VMMs are running as expected and protecting her
applications from compromise by internal cloud components.

In demonstrating these qualities, Alice first expects the cloud
platform (VMMs) to be trustworthy. Proving general system se-
curity is difficult, but a hardened, verifiable, and consistent de-
ployment of VM hosting systems simplifies the task of proving the
cloud’s code and data. Clouds offer a unique opportunity for the
reuse of expert administration across the data center to deploy a
concrete foundation for integrity. For example, the cloud’s econ-
omy of scale may encourage the use or development of proven
components, where possible (e.g., trusted microkernels for VMMs
like SEL4 [13]), and the careful configuration of cloud platforms
whose code and data are largely fixed once installed [4]. Another
key issue is the management of the cloud’s attack surface [9]. Cur-
rently, we know that network-facing processes are an obvious at-
tack vector, but we do not have a clear understanding of how com-
promises may propagate [3, 26] throughout arbitrary systems. Cloud
architectures may provide a motivation for developing a concrete
understanding of attack surfaces.

Once configured, the cloud must generate proofs of integrity for
customers like Alice. One approach is to use integrity measurement
techniques that leverage secure hardware like the Trusted Platform
Module (TPM) to produce attestations, measurements of integrity-
sensitive code and data, signed by a key tied to the physical hard-
ware. While nearly ten year of research has been done on leverag-
ing these trust building primitives, practical deployments are lim-
ited at present. Nonetheless, the cloud environment provides one
of the most attractive opportunities for broad use of this technol-
ogy. Integrity measurement requires physical security of hardware,
a PKI to manage TPM keys, and a means of interpreting attesta-
tions. First, clouds providers often advertise their armed guards
and internal auditing practices, which provides reasonable protec-
tion from physical attacks. Second, the central administration of
clouds serves as an ideal scenario for an internal PKI. Third, as
the cloud platform is also controlled by one party, they can define
a methodology for verifying the integrity of their cloud. While it
is possible that a cloud provider will generate vacuous proofs (i.e.,
ones that do not imply strong integrity or security guarantees), cer-
tainly the research community will evaluate the meaning of these
proofs. The key idea is that such proofs will enable a more trans-
parent and verifiable operating environment.

With a proof of the integrity of this cloud platform, Alice would
also want to determine whether the data security of her applica-
tion is protected. This includes assessing both data secrecy is-
sues caused by multi-tenancy (e.g., [18]) and the use of shared
cloud resources and data integrity issues caused by customer con-
figuration of access control policies over multiple services. Us-
ing integrity measurement methods to prove data security in gen-
eral purpose applications has not been practical to date, but again,
the structure of cloud systems provides a foundation for building
data security proofs that are accurate and meaningful to Alice. In
general, a cloud system provides well-defined loading and execu-
tion phases, where much of the execution may be governed by the
cloud (networking and storage). Successful integrity measurement
methods have been developed for the loading of code [19, 25] and
the loading of data from prior computations [23]. However, track-
ing the runtime integrity of general systems has been incomplete.
Early methods implemented authenticated boot [19], where a sys-
tem would be allowed to run regardless of whether it was secure or
not, and the verifier would have to determine this from the integrity
proof. Over time, methods have adopted a secure boot [1] posture,

44

where enforcement of code loaded [14] and accesses authorized
once loaded [11], is used to make it more likely that the system
will remain high integrity. In the cloud, effective secure boot is
practical because Alice defines the secure boot conditions for her
applications and the cloud simply enforces what Alice requests.

3. VERIFYING CLOUD INTEGRITY
In order to prove its integrity, a remote entity generates an attes-

tation of its configuration, but a verifier must have some method-
ology for assessing this attestation. While several methods have
been developed to validate the integrity of a running application
(see Parno et al’s survey for details [17]), we lack a model for com-
paring the integrity guarantees offered by such methods 1. In this
section, we develop a preliminary model for reasoning about the
integrity of systems at a more abstract level than the low-level code
and data measurements employed in many integrity measurement
techniques [19, 14, 24]. To do this, we adapt the Outbound Authen-
tication [25] (OA) model, which authenticates processes running on
a secure co-processor, to a model for verifying higher level integrity
guarantees of a running application on a complex system like a VM.
We start by discussing the integrity properties that must be verified
in a single system case and then extend these notions for verify-
ing applications in a cloud scenario. We describe the challenges of
using this model and possible directions for solving them.

3.1 Integrity Measurement
Before discussing our model, we first provide some terminology

and background on the aspects of integrity measurement germane
to it. The TPM is a secure coprocessor on the motherboard that
exposes several key functions. It is capable of producing crypto-
graphic keys, perform digital signing, encryption, and hashing. A
signing key pair called the Endorsement Key (EK) that uniquely
identifies the TPM device and associated client is burned into the
TPM. The TPM uses the EK to certify other keys including attes-
tation identity keys (AIKs). Measurements are recorded with the
TPM Extend function that takes a SHA1 hash of arbitrary data and
updates one of the TPM’s platform configuration registers (PCRs)
with a hash of the measurement and current PCR value. This forms
a hash chain a verifier can recreate given the measurement list that
formed it. Typically, a system will measure security critical code
and data starting from the BIOS followed by each stage of the boot
process up to runtime operations at the application level. These
measurements are reported using the TPM Quote operation that
takes a nonce from a remote party and forms a statement containing
the PCRs and the nonce signed by an AIK. This quote along with
the measurement list forms an attestation of the system’s state.

A criteria is a set of properties P that must be satisfied for a
verifier to consider a system high integrity. Such properties are ar-
bitrary statements mapped to a set of measurements M , which we
denote M×P . This representation is similar to previous research in
property-based attestation [16]. In order to obtain these mappings,
the verifier chooses a trust set of authorities A that speak for the
validity of a measurement to property mapping. Thus, we can con-
sider a verifier’s trust function Trust : A → M × P , which takes
a set of authorities and returns the mapping of measurements to
properties. How these mappings are formed in current approaches
is largely an ad hoc endeavor. Typically, an administrator is ex-
pected to choose a set of software distributions to trust. Using that
set, the administrator might chose a simple property that requires

1Datta et al’s logic [6] enables reasoning about TPM-level oper-
ations, but not how the composition of code in systems impacts
overall integrity.

the attesting systems to run only code from the distribution. Ideally,
a more sophisticated criteria based on abstract security properties
like Biba [2] integrity is desirable so that the underlying system
configuration is not tied so directly to the verifier’s requirements.
Such properties could require a combination of access control pol-
icy and code measurements that ensure high integrity labeled pro-
cesses only depend on high integrity inputs. Such properties allow
a verifier to compare different criteria to one another. We plan to
investigate criteria formats and how they can be compared in future
work. Once the verifier has chosen its criteria and trust set, it can
then assess the integrity of an attestation.

3.2 Verifying a single entity
We choose the OA model for verifying systems as it was one of

the first systems for reasoning about the authenticity of remote se-
cure coprocessor systems. In OA, a system is organized into layers,
which are segregated along divisions of function, storage, and con-
trol. An application is a layer running on an OS layer, which may
be run on hardware virtualized by a VMM layer. We focus now
on what it takes to verify a single layer. A layer’s configuration is
initialized by a finite sequence of operations called a history H that
defines how a set of software entities E (e.g., code, inputs) and an
enforcement policy π were loaded into the layer. A history shows
how an initial configuration was produced prior to this execution,
which could be a hash of the layer’s files signed by some author-
ity. A run R is an unbounded sequence of operations prefixed by
H , written H ≺ R. Each operation σ in R causes a change in
the layer’s configuration. We can express a run for a layer after i
operations were executed at time τ as Rτ = (σ0, . . . , σi). Such
operations include code loading and interactions with other soft-
ware entities that cause a change in the configuration. A run is
analogous to the measurement log included with an attestation and
represents how the current configuration was produced.

We modify the OA construction by considering the operations
that affect integrity (i.e., integrity-relevant operations) in a run and
the history that initialized it. The set of all integrity-relevant op-
erations that can occur at a layer is Σ. Furthermore, a system’s
enforcement mechanism (e.g., access control) uses a policy π to
mediate a set of operations Σπ , which is a subset of Σ. These me-
diated operations are not recorded in the run if the subjects perform-
ing the operations are allowed by the policy and thus are trusted not
to affect the configuration’s integrity. One result of this extension
is that strict enforcement policies reduce the size of a layer’s run
because there are fewer possible operations to assess. Thus, a layer
Nτ ’s configuration at time τ is defined as a tuple 〈E, π,H,Rτ 〉,
where E and π are the current entities (code or programs running
in the layer) and policies, respectively.

A verifier evaluates a layer’s integrity by: (1) verifying all enti-
ties loaded during H are trusted; (2) the sequence of operations in
Rτ do not alter the current configuration in an untrusted way (e.g.,
load untrusted entities); and (3) π does not allow mediated opera-
tions Σπ to affect the configuration’s integrity. We now examine
how these three conditions are verified.

Verifying the History.
Verifying a layer’s history H requires checking that all entities

installed into the layer are trusted. To do this, the verifier examines
the history of measurements that produced the layer’s initial state.
If these measurements M map to the properties P required by the
verifier, as dictated by the verifier’s trusted authorities A, then the
initial state can be considered trusted. Approaches used by exist-
ing integrity measurement systems like IMA [19] match hashes of
loaded code to a trusted software distribution. While IMA is useful

45

for examining the identity of code, data is more difficult to verify
as arbitrary files may have no well-known hash. The Root of Trust
Installer (ROTI) approach [4], addresses this problem by generat-
ing a ROTI proof that associates the system’s installed state to a
trusted installer. This enables a verifier to simply check that files
have not been modified from the installed state and the installer is
trustworthy. Dynamic files need an ad hoc verification, analogous
to a Clark-Wilson integrity verification procedure [5].

Verifying the Run.
After a layer is initialized by H , its configuration undergoes

modification due to a sequence of operations that may affect E
in the layer. Verifying that the operations in R have not degraded
the configuration’s integrity requires checking that all operations
satisfy the verifier’s criteria. For code loads, external inputs, or
other modifications to entities, the run contains measurements M
of these changes and each must map to the properties P satisfying
the criteria. The run differs from the history in that it contains op-
erations occurring after installation and are dynamic for each run.

Verifying Enforcement.
Since a run is unbounded, verifying the totality of R can be

quite extensive, which we imagine has limited its utility. Record-
ing and verifying massive logs of operations like server transac-
tions or writes to memory is not practical. However, enforcement
can reduce the set of operations that must be recorded. Researchers
have built integrity measurement methods that enable an enforce-
ment mechanism to speak for the integrity impact of an operation
like limiting code execution to trusted sources [24], limiting ex-
ternal input to trusted processes [11], or vouching for integrity of
remotely-generated data [23]. A verifier checks whether this en-
forcement is trusted to enforce an integrity property by assessing
the integrity of the entities enforcing the policy π and the policy
itself against the verifier’s criteria. That is, the measurements M
consist of the enforcing entities and policy enforced to satisfy the
property P , where an authority A dictate the requirements.

3.3 Verifying a Multi-layer System
In cloud systems, an application VM does not run as a single

layer. The VM often runs in a system containing a VMM, and
one or more VMs privileged VMs that provide services for running
application VMs. We refer to this VM host using the term node
controller (NC), which is a term used by the open source cloud
framework Eucalyptus [7]. An NC has a direct impact on the in-
tegrity of the VMs it runs. An untrusted NC could compromise the
VM’s configuration, leak secrets, or worse. Thus, it is crucial to
verify the integrity of all layers when assessing a particular layer’s
integrity. Verifying multiple layers involves single layer verifica-
tion as above plus the ability to verify that lower layer provided
enforcement speaks for the integrity of higher layers.

A lower layer can provide enforcement on the operations affect-
ing the layers above. For example, a NC can restrict the number
of untrusted external network inputs to a VM or introspect into its
memory space to verify runtime integrity of code. Thus, a layer’s
enforcement policy π can be considered the composition of poli-
cies below it. Another consideration is the ability of a layer to
verify the integrity of a higher layer, and speak for that integrity to
others. Suppose that one layer proves that the integrity of a higher
layer satisfies a criteria that is compliant with a verifier’s criteria.
If the verifier accepts the integrity of the lower layer and its ability
to judge other layers based on that criteria, then the verifier trusts
the lower layer to advocate for a higher layer’s integrity. For ex-
ample, if a verifier’s criteria CA has the same or greater number

Alice
Cloud

Verifier
Node

Controller

VM VMVMOther
VMs

(1) (2)
(4)(5)

(3)
(6)

Figure 1: Alice (1) requests an attestation of the CV and its
criteria. The CV (2) verifies the cloud’s NCs while Alice (3)
starts her VM. The NC (4) sends an an attestation and identity
key of Alice’s VM to the CV, which CV (5) forwards to Alice.
Finally, Alice (6) uses the key to authorize her VM to access her
data after verifying the VM attestation and key signature.

of properties and trusts the same or fewer set of authorities as CB ,
then criteria CB should enable a verifier to trust only a subset of
systems that a verifier using CA would trust, if the layer applying
CB is trusted to evaluate that criteria. This is similar to BIND’s
notion of transitive trust [23].

As an example, consider an NC running the Virtual Machine
Verifier (VMV) enforcement and attestation framework [22] that
enforces criteria CNC on its VMs. The VMV ensures a VM satis-
fies CNC by enforcing a particular runtime enforcement policy on
the VM and inspecting measurements of its initial state. A verifier
with criteria CV can then inspect an attestation of the NC against
its criteria to establish its integrity. It can then check that CNC

satisfies the same properties as CV . If so, then the NC can speak
for the integrity of the VM. We employ this concept in the follow-
ing subsection to design a protocol for verifying application VM
integrity using a verification proxy for the cloud.

3.4 Verification Protocol
We now describe a protocol to deploy integrity-verifiable appli-

cations on a cloud system. First, we introduce the protocol’s com-
ponents and their purpose and then show how the protocol is used
by a customer Alice to deploy and verify her application on the
cloud. Recall that Alice wants to determine whether the cloud plat-
form satisfies her integrity criteria and whether her VM’s runtime
data security is enforced. We assume the cloud provides physical
security and public key certificates for the hardware TPMs of the
nodes.

A cloud application can be viewed as a collection of specialized
VMs running on the cloud that interact with data hosted on the
cloud and input from external parties. The goal of our verification
protocol is to prove to Alice that her application VMs are running
on a high integrity platform and that only high integrity VMs can
access the application’s data. Figure 1 illustrates our protocol for
launching and verifying such application VMs. Since direct access
to the NC by Alice is not possible as clouds do not want to open
an avenue for attack and denial of service, we introduce the cloud
verifier (CV), a verifiable and minimal service within and operated
by the cloud to verify the integrity of the NCs within the cloud using
the cloud’s own criteria CCV . To use the CV, users first verify the
CV’s integrity and the criteria it uses to verify the cloud’s NCs.
If the user finds the CV is correct and that its criteria satisfies the
user’s own criteria, the CV can act as a verified proxy, enabling the
CV to speak for NC integrity in the cloud.

For our protocol, we assume Alice’s criteria CA contains her re-
quirements for both cloud components (CV and NCs) as well as
her VMs. In step (1), Alice requests an attestation of the CV’s con-
figuration, Attest(CV) = Sign(E, π,H,R)

K−
CV

and its criteria

CCV , where K−
CV is the private portion of the CV’s AIK. Alice

verifies Attest(CV) as described in Section 3.2, checks the sign-
ing key is certified by the cloud’s signing key, and examines if CCV

46

is compliant with CA. In step (2), the CV requests Attest(NC) for
NCs in the cloud and verifies them against CCV . If an NC’s proof
fails verification, the cloud is alerted and action can be taken to cor-
rect the problem. Since other VMs are most likely running on the
NC, the CV may be already monitoring the NCs. For larger clouds
where a single CV may not be sufficient to verify all NCs, we envi-
sion using a tiered structure where multiple CVs are delegated dif-
ferent sets of NCs. Once the cloud NCs are verified, Alice (3) sends
a request to start a VM on the cloud and loads a VM image on a NC
directed by the CV. The NC then creates the VM’s executing envi-
ronment and provides any requested resources. The NC generates
the VM’s identity key pair and signs it. In step (4), the NC sends
an attestation of the VM Attest(VM) and Sign(K+

V M)
K−

NC
of

the VM to the CV, where K+
V M is the identity public key and K−

NC

is private AIK portion. The CV also signs the identity key with
the cloud’s AIK, signifying to Alice that the key is from the cloud.
The CV then delivers the VM attestation and signed key to Alice in
(5). Alice verifies the VM’s attestation against CA’s VM integrity
properties and validates that the VM identity key’s signature chain
comes from the CV. Finally, she uses the identity key to establish
an authenticated connection with the VM in step (6) and sends an
authorization for the VM to access application data hosted on the
cloud. Without this authorization, no VM is able to access the data.

4. IMPLEMENTING VERIFICATION
We now describe our preliminary implementation of our cloud

verification protocol. Figure 2 illustrates our design deployed in a
private Eucalyptus [7] cloud. The cloud consists of several com-
ponents. The cloud controller is a web management front-end that
authenticates user requests and allows basic administration of the
application provider’s VMs. Since the cloud controller is a pub-
licly accessible interface, we also implement the cloud verifier in
it. While the verifier service is small, placing it in the cloud con-
troller increases its potential attack surface. In future work, we plan
to design the CV as a separate, minimal system from the cloud con-
troller. The NCs run VMs from a cloud storage, which holds user
data volumes and VM images. Each VM contains a volume en-
cryption key to access encrypted data volumes in the cloud store.
This key is further encrypted by the customer and is only decrypted
when the VM is verified as high integrity.

Our implementation runs as follows. The cloud customer Alice
(1) requests an attestation of the cloud controller. After verifying
it, she (2a) sends a request to start a new VM, which is (2b) for-
warded to an NC. The NC (3) downloads the specific VM image
from the cloud storage and runs the VM using Linux KVM. The
cloud controller’s CV (4) collects attestations of every NC at reg-
ular intervals. Included in the attestation is a proof for each VM
on the NC. These proofs contain a signed hash of the VM image
and a fresh IPsec key pair loaded into the VM before booting it.
The cloud controller first verifies the NC’s attestation satisfies its
criteria and then (5) sends the VM proof and key signed by the CV
to Alice. After verifying her VM satisfies her criteria for her VM,
Alice (6) connects to her VM using the signed IPsec key and sends
a key to decrypt the VM’s volume encryption key used to (7) access
the application data stored in the cloud storage.

5. PRELIMINARY EVALUATION
We now turn to our preliminary evaluation of our trusted cloud

environment. Our goal is to determine: 1) whether it is practical to
deploy such a framework and 2) how much of an impact verifying
the individual cloud components will have on performance. To do
this, we constructed a proof of concept trusted cloud testbed using

(4) Send attestations
and keys

(5) Get VM
attestation

and key

(2b) Start VM
Command

Node
Controller

Cloud
Controller

and CV

VMVM

(7) Access Data

(1) Verify
Controller

Alice

(2a) Start
VM

(6) Send
Decryption key

over IPsec

(3) Load
VM image

Cloud
Storage

Figure 2: Implementation of our verification protocol.

a Eucalyptus cloud on Dell PowerEdge M605 blades with 8-core
2.3GHz Opteron CPUs with 16GB RAM on a quiescent gigabit
network. Our evaluation was broken down into three distinct tests,
which speak to the primary concerns we are evaluating: configuring
the cloud hosts, generating attestations for those components and
VMs, and serving proofs to cloud customers.

5.1 Configuring Hosts
We first evaluated the practicality of deploying NCs in a trusted

cloud. First, we created a 368MB compressed disk image of the
NC’s 100GB hard disk and stored it on a partimage server. Next,
we built a network boot installer to write and configure the disk im-
age on each NC over the network. The installer followed the ROTI
design [4], where a hash of the resulting filesystem was bound to
the network installer by the TPM. One design challenge of using
a network boot installer is the threat of malicious attackers on the
local network that could modify data on the wire or pose as a rogue
network boot or partimage server. We address this issue by employ-
ing the OSLO bootloader [12], which uses the SKINIT instruction
in AMD CPUs to setup a secure execution environment for the in-
staller and measures the code before executing it. This allows us to
establish a root of trust for the installation procedure, even though
the code was obtained over the network. We detail the design of
our installer further in our techreport [21].

The installer consisted of a Linux 2.6.18.8 kernel, an initial ramdisk
containing the installer environment, and the OSLO [12] bootloader.
The ramdisk was 11MBs and contained 370 lines of custom shell
scripts to automate the process. Finally, we setup ProxyDHCP and
TFTP servers to host the installer and pxelinux network boot
client. After the NC’s machine is directed by the ProxyDHCP
server to download the installer from the TFTP boot server, the
OSLO bootloader performs the SKINIT instruction to measure and
launch the installer kernel. From that point, the installer took ap-
proximate 150 seconds to perform the full installation, which in-
cludes downloading the disk image, making system specific con-
figurations, and measuring the filesystem. Of that time, about 8
seconds were necessary to configure the netROTI software and 2
seconds were spent taking a hash of the local filesystem and down-
loaded disk image, which is a function of the size of the disk and
hashing algorithm (3% of the download time). Configuring the
TPM to generate an RSA signing key pair takes approximately one
minute, but need not be performed for each cloud host install.

5.2 Attestation of Cloud Components and VMs
Once the hosts are deployed, we evaluated the performance of

generating attestations from the CV for customers to verify hosts
and VMs. For the CV to generate an attestation for its hosts, the
host must generate an attestation, the CV must verify it satisfies the
CV’s properties for hosts, and the CV must generate an attestation
of this fact for the clients. The performance cost is dominated by

47

the time to build attestations, unsurprisingly, as the TPM hardware
is slow, at a little over one second per attestation [22]. Verification
costs are negligible in comparison. We use IPsec between the hosts
and the CV also, so the CV can maintain the integrity of the hosts,
first done for the ROTI work [4], which add about one second be-
fore the first attestation.

We then evaluated the time to gather attestations and monitor the
integrity of each cloud guest VM. After receiving a request from
the CV that we integrated into our Cloud Controller, the NC took
approximately 1 second to generate attestations. Verification of the
attestations for each NC is performed in parallel with negligible
overhead. Along with each attestation, the NCs send attestations
and signed identity keys of each VM they are hosting. In this way,
we batch the VM attestation process into a single step to reduce the
number of requests to each NC for a VM attestation.

5.3 Scalable Proof Generation
Besides verifying attestations, the CV must also service requests

for VM attestations made by the cloud users. Since a CV could
receive a large number of request and generating attestations of the
CV itself from a TPM is slow (around 900 msecs per attestation),
we use asynchronous attestations to serve up these requests. We
developed a mechanism to provide asynchronous attestations that
was able to scale to very large client loads while still providing in-
tegrity proofs. By utilizing the proof constructions proposed, the
cloud verifier can support over 7, 000 requests per second, as pre-
viously shown [15]. This demonstrates the CV can handle a large
number of requests without degrading in performance and can be
further improved with load balancing between multiple CVs.

6. FUTURE WORK
In this paper, we presented a method of deploying and verify-

ing cloud applications while minimizing the amount of implicitly
trusted cloud components. We introduced the notion of a cloud ver-
ifier that assesses the integrity of the cloud’s VMMs for an appli-
cation provider. We evaluated our system with a Tor cloud applica-
tion and found verification caused minimal impact on performance.
In future work, we plan to investigate automated integrity criteria
generation and a more expressive model of integrity verification.

7. REFERENCES
[1] ARBAUGH, W. A., FARBER, D. J., AND SMITH, J. M. A

Secure and Reliable Bootstrap Architecture. In IEEE SP ’97
(1997), IEEE Computer Society, p. 65.

[2] BIBA, K. J. Integrity Considerations for Secure Computer
Systems. Tech. Rep. MTR-3153, MITRE, April 1977.

[3] CHEN, H., LI, N., AND MAO, Z. Analyzing and Comparing
the Protection Quality of Security Enhanced Operating
Systems. In NDSS (2009).

[4] CLAIR, L. S., SCHIFFMAN, J., JAEGER, T., AND

MCDANIEL, P. Establishing and sustaining system integrity
via root of trust installation. In ACSAC (Dec. 2007).

[5] CLARK, D. D., AND WILSON, D. R. A Comparison of
Commercial and Military Computer Security Policies.
Security and Privacy 00 (1987), 184.

[6] DATTA, A., FRANKLIN, J., GARG, D., AND KAYNAR, D.
A Logic of Secure Systems and its Application to Trusted
Computing. In IEEE SP ’09 (May 2009).

[7] Eucalyptus. http://www.eucalyptus.com/.
[8] Forrester Research. Conventional Wisdom Is Wrong About

Cloud IaaS. http://www.forrester.com.

[9] HOWARD, M., PINCUS, J., AND WING, J. M. Measuring
Relative Attack Surfaces. In Proceedings of Workshop on
Advanced Developments in Software and Systems Security
(2003).

[10] IDC. The Single Biggest Reason Public Clouds Will
Dominate the Next Era of IT.
http://blogs.idc.com/ie/?p=345.

[11] JAEGER, T., SAILER, R., AND SHANKAR, U. PRIMA:
Policy-Reduced Integrity Measurement Architecture. In
Proceedings of the 11th ACM SACMAT (2006).

[12] KAUER, B. Oslo: improving the security of trusted
computing. In 16th USENIX Security Symposium (Berkeley,
CA, USA, 2007), USENIX Association, pp. 1–9.

[13] KLEIN, G., ET AL. seL4: Formal Verification of an OS
Kernel. In SOSP ’09 (2009), ACM, pp. 207–220.

[14] MCCUNE, J. M., PERRIG, A., AND REITER, M. K. Safe
Passage for Passwords and Other Sensitive Data. In NDSS
(Feb. 2009).

[15] MOYER, T., BUTLER, K., SCHIFFMAN, J., MCDANIEL, P.,
AND JAEGER, T. Scalable Web Content Attestation. In
ACSAC ’09 (2009).

[16] NAGARAJAN, A., VARADHARAJAN, V., HITCHENS, M.,
AND GALLERY, E. Property based attestation and trusted
computing: Analysis and challenges. In International
Conference on Network and System Security (Washington,
DC, USA, 2009), IEEE Computer Society, pp. 278–285.

[17] PARNO, B., MCCUNE, J. M., AND PERRIG, A.
Bootstrapping trust in commodity computers. In IEEE SP
’10 (May 2010).

[18] RISTENPART, T., TROMER, E., SHACHAM, H., AND

SAVAGE, S. Hey, You, Get Off of my Cloud: Exploring
Information Leakage in Third-Party Compute Clouds. In
CCS ’09, ACM.

[19] SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN,
L. Design and Implementation of a TCG-based Integrity
Measurement Architecture. In USENIX-SS ’04 (Aug. 2004),
USENIX Association.

[20] SANTOS, N., GUMMADI, K. P., AND RODRIGUES, R.
Towards trusted cloud computing. In Proceedings of
USENIX HotCloud’09: Workshop on Hot Topics in Cloud
Computing (San Diego, CA, June 2009).

[21] SCHIFFMAN, J., JAEGER, T., AND MCDANIEL, P.
Network-based Root of Trust for Installation. Tech. Rep.
Technical Report NAS-TR-0135-2010, Network and
Security Research Center, June 2010.

[22] SCHIFFMAN, J., MOYER, T., SHAL, C., JAEGER, T., AND

MCDANIEL, P. Justifying integrity using a Virtual Machine
Verifier. In ACSAC ’09 (2009), ACSA.

[23] SHI, E., PERRIG, A., AND VAN DOORN, L. BIND: A
Fine-Grained Attestation Service for Secure Distributed
Systems. In IEEE SP ’05 (2005), IEEE Computer Society.

[24] SHRIVASTAVA, S. Satem: Trusted Service Code Execution
across Transactions. In SRDS ’06 (2006), IEEE Computer
Society, pp. 337–338.

[25] SMITH, S. W. Outbound Authentication for Programmable
Secure Coprocessors. In ESORICS (Oct. 2002).

[26] VIJAYAKUMAR, H., JAKKA, G., RUEDA, S., SCHIFFMAN,
J., AND JAEGER, T. Integrity Walls: Finding attack surfaces
from mandatory access control policies. Tech. Rep.
NAS-TR-0124-2010, NSRC, Feb. 2010.

48

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

