
Verifying System Integrity by Proxy�

Joshua Schiffman, Hayawardh Vijayakumar, and Trent Jaeger

Pennsylvania State University
{jschiffm,hvijay,tjaeger}@cse.psu.edu

Abstract. Users are increasingly turning to online services, but are concerned for
the safety of their personal data and critical business tasks. While secure commu-
nication protocols like TLS authenticate and protect connections to these services,
they cannot guarantee the correctness of the endpoint system. Users would like
assurance that all the remote data they receive is from systems that satisfy the
users’ integrity requirements. Hardware-based integrity measurement (IM) pro-
tocols have long promised such guarantees, but have failed to deliver them in
practice. Their reliance on non-performant devices to generate timely attestations
and ad hoc measurement frameworks limits the efficiency and completeness of
remote integrity verification. In this paper, we introduce the integrity verification
proxy (IVP), a service that enforces integrity requirements over connections to
remote systems. The IVP monitors changes to the unmodified system and im-
mediately terminates connections to clients whose specific integrity requirements
are not satisfied while eliminating the attestation reporting bottleneck imposed
by current IM protocols. We implemented a proof-of-concept IVP that detects
several classes of integrity violations on a Linux KVM system, while imposing
less than 1.5% overhead on two application benchmarks and no more than 8% on
I/O-bound micro-benchmarks.

1 Introduction

Traditionally in-house computing and storage tasks are becoming increasingly inte-
grated with or replaced by online services. The proliferation of inexpensive cloud com-
puting platforms has lowered the barrier for access to cheap scalable resources, but at
the cost of increased risk. Instead of just defending locally administered systems, cus-
tomers must now rely on services that may be unable or unwilling to adequately secure
themselves. Recent attacks on cloud platforms [8] and multinational corporations [55]
have eroded the public’s willingness to blindly trust these companies’ ability to protect
their clients’ interests. As a result, the need for effective and timely verification of these
services is greater than ever.

Recent advances in trusted computing hardware [64,22,1] and integrity measurement
(IM) protocols [39] aim to achieve this goal, but current approaches are insufficient for
several reasons. First, existing protocols depend on remote attestation to convey in-
formation about a proving system’s configuration to a relying party for verification.
However, an attested configuration is only valid at the time the attention was generated,

� This material is based upon work supported by the National Science Foundation under Grant
No. CNS-0931914 and CNS-1117692.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 179–200, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 J. Schiffman, H. Vijayakumar, and T. Jaeger

and any changes to that configuration may invalidate it. Since the proving system’s
components may undergo changes at anytime, a relying party must continually request
fresh information to detect a potential violation of system integrity. This problem is
made worse by the significant delay introduced by many IM protocols’ reliance on the
Trusted Platform Module [64] (TPM), a widely-deployed and inexpensive coproces-
sor, to generate attestations. Since the TPM was designed for cost and not speed, it is
only capable of producing roughly one attestation per second [59,33,34]. This renders
TPM-based protocols far too inefficient for interactive applications and high demand
scenarios.

Another limitation of current IM approaches is how integrity-relevant events are
monitored on the proving system. Systems undergo numerous changes to their con-
figurations due to events ranging from new code execution to dynamic inputs from
devices. While various measurement frameworks have been developed to enable these
components to report arbitrary events and its associated content (e.g., memory pages
and network packets), conveying everything is impractical due to the sheer volume of
data and effort placed on relying parties to reason about it. Moreover, not every event
may have a meaningful effect on the system and communicating such events is a further
waste. Thus, proving systems often make implicit assumptions to remove the need to
collect particular measurements (e.g., programs can safely handle all network input),
which may not be consistent with the trust assumptions of the relying party. This prob-
lem stems from the onus placed on the proving system’s administrator to choose and
configure how the various IM components will collect information without knowledge
of relying party’s requirements.

To improve the utility of existing IM mechanisms, we propose shifting verification
from the relying party to a verification proxy at the proving system. Doing so eliminates
the bottleneck caused by remote attestation (and thus the TPM) from the critical path,
by using traditional attestation protocols to verify the proxy and the proxy to verify
the proving system’s runtime integrity is maintained. Monitoring the system locally
also permits the proxy to examine information relevant to the relying party’s integrity
requirements. Moreover, this approach supports the integration of fine-grain monitoring
techniques like virtual machine introspection (VMI) into remote system verification that
would otherwise be difficult to convey over traditional attestation protocols [16,17,30]
or require modification to the monitored system.

In this paper, we present the integrity verification proxy (IVP), an integrity monitor
framework that verifies system integrity at the proving system on behalf of the relying
party clients. The IVP is a service resident in a virtual machine (VM) host that monitors
the integrity of its hosted VMs for the duration of their execution through a combina-
tion of loadtime and VMI mechanisms. Client connections to the monitored VM are
proxied through IVP and are maintained so long as the VM satisfies the client’s sup-
plied integrity criteria. The IVP framework is able to verify a variety of requirements
through an extensible set of measurement modules that translate a client’s requirements
into VM-specific properties that are then tracked at runtime. When an event on the VM
violates a connected client’s criteria, immediate action is taken to protect that client by
terminating the connection.

Verifying System Integrity by Proxy 181

However, we faced several challenges in designing an IVP that can be trusted to ver-
ify the target system. First, the proxy itself must be simple to verify and able to maintain
its integrity without the need for frequent attestation. We employed previous efforts in
deploying static, verifiable VM hosts [46] to achieve this. Second, introspecting directly
on the running VM can introduce significant performance overhead if done naively. In-
stead, we monitor the integrity of the VM’s enforcement mechanisms by leveraging
practical integrity models [28,60,49] to identify specific enforcement points that are
critical for protecting the system’s integrity. By monitoring these enforcement points,
we reduce the frequency and impact of verification. Finally, managing multiple chan-
nels from the same and different clients introduces redundant criteria verification. We
eliminate this redundancy by aggregating multiple connections for a single criteria.

We implement a proof-of-concept IVP for an Ubuntu VM running on a Linux Kernel-
based Virtual Machine (KVM) host. We constructed both loadtime and custom CPU
register-based VMI modules for monitoring VM enforcement mechanisms. We vali-
dated our proxy’s ability to detect violations correctly by building and attacking a VM
designed to satisfy integrity criteria based on a practical integrity models and several
kernel integrity requirements. We further evaluated the performance impact the IVP
imposed on monitored VMs, finding that it introduced less than 1.5% overhead on two
application-level benchmarks.

The rest of this paper is organized as follows. Section 2 provides background on cur-
rent IM approaches and elaborates on the limitation of current IM protocols. Section 3
enumerates our design goals, presents the IVP architecture broadly, and highlights the
main design challenges. Section 4 describes of our implementation, which is followed
by evaluation of functionality and performance in Section 5. Finally, we provide related
work in Section 6 before concluding in Section 7.

2 Remote Integrity Verification

In this section, we present background on remote integrity verification and its building
blocks: measurement and attestation. We then discuss the challenges current approaches
face and show why they are insufficient for monitoring dynamic systems.

2.1 Integrity Verification Overview

Figure 1 provides a conceptual view of the remote integrity verification, where a re-
lying party wants to determine whether a proving system’s current configuration (e.g.,
running code and data) satisfies the verifier’s integrity criteria for a trustworthy system.
The proving system has integrity measurement for its early boot layers that then mea-
sures the operating system code and data, which in turn may measure user code, data,
and operations (e.g., VMs and processes). Each individual layer aims to measure the
integrity-relevant events occurring at the layer above. The relying party monitors these
events by requesting attestations of the measured events to evaluate satisfaction against
the integrity criteria. If the proving system fails to satisfy the criteria, the monitor pro-
tects the relying party by denying access to the untrustworthy system. Thus, the monitor
enforces an integrity policy (the criteria) over the communication to proving systems.

182 J. Schiffman, H. Vijayakumar, and T. Jaeger

Proving System

OS Layers (Kernel, Hypervisor)

Early Boot Layers (CRTM, BIOS, Grub)

Measure

Measure

Relying Party

Integrity
Monitor

Attestation

... More Complex
More Frequent

Events

Fig. 1. A relying party’s integrity monitor inspects a remote system’s integrity by requesting
attestations of integrity-relevant events collected by the proving system’s layers of integrity
measurement

Its role is similar to that of a reference monitor [2] that enforces access control policies
over resources.

Traditionally, the monitor resides on the relying party and receives measurements
provided by the proving system. Remote attestation protocols enable proving systems
to attest to the integrity and authenticity of measurements collected on the system to
relying parties. The Trusted Computing Group specifications use a request-response
protocol to ensure freshness of attestations as well [43].

In order to assess system integrity accurately, the integrity monitor must observe
events relevant to its integrity criteria. For example, criteria demanding enforcement
of an information flow lattice might require that only trustworthy code are loaded into
privileged processes and critical system files may only be written to by such processes.
Thus, the monitor would require the combination of measurement mechanisms on the
proving system (its integrity measurement (IM) framework) to record these events. We
now provide a brief overview of existing measurement and attestation techniques to
illustrate how an integrity monitor would use them, but provide a broader review in
Section 6.

Measurement. A relying party’s ability to judge system integrity is limited by which
events are recorded and their detail. A framework with greater coverage of system
events will be more capable of measuring the required integrity criteria for more com-
plex configurations at higher layers. We divide these measurement techniques into two
categories: (1) loadtime and (2) runtime. Loadtime measurements involve capturing
changes to the system like code loading and data input before they occur. For exam-
ple, the Integrity Measurement Architecture (IMA) measures binaries before they are
mapped into a running process [43] and Terra hashes VM disk blocks before they are
paged into memory [16]. Others like Flicker [33] and TrustVisor [32] leverage hardware
isolation to reduce the TCB down to a single running process. To measure other events,
such as the data read and written by processes, some IM approaches measure other load-
time events. For example, PRIMA [23] measures the mandatory access control policy
governing processes at loadtime.

Loadtime only frameworks assume that system integrity is maintained if all loadtime
measurements are trustworthy. However, unexpected runtime events like code injection
attacks or difficult to assess inputs like arbitrary network packets can subvert system in-
tegrity. To address this, runtime measurement techniques have been designed to record

Verifying System Integrity by Proxy 183

this class of events. Furthermore, mechanisms like Trousers [65] for userspace pro-
cesses and the vTPM [9] for virtual machines (VMs) enable these entities to report
integrity-relevant events to an external IM framework.

However, mechanisms that report on a component’s integrity from within run the
risk of being subverted if the processes or VM is compromised. As an alternative, exter-
nal approaches like VM introspection (VMI) enables a hypervisor to observe runtime
events isolated from the watched VM [41,20,40]. Recent VMI techniques [30,50,25]
use hardware memory protection and trampoline code to trap execution back to the host
for further inspection. While runtime measurement can detect changes at a finer gran-
ularity than loadtime measurements, they also introduce greater complexity. In partic-
ular, external approaches introduce a semantic gap that require domain knowledge like
memory layouts to detect malicious modifications [7].

Attestation. Early remote attestation efforts like Genuinity [26] and Pioneer [48] demon-
strated the feasibility of software-based attestation, but were limited to specific, con-
trolled environments. Specialized hardware approaches offered increased protection for
the measurement framework by isolating it from the monitored system [4,42]. Hard-
ware security modules (HSMs) like the IBM 4758 used an early attestation technique
called Outbound Authentication [54] to certify the integrity of installed code entities via
certificate chains. However, such specialized hardware imposed a significantly higher
deployment cost and complexity.

The Trusted Platform Module (TPM) [64] was introduced to provide commodity
HSMs across numerous consumer electronic devices. The TPM facilitates several cryp-
tographic features like key generation, signing, and encryption. It also supports remote
attestation through a set of platform configuration registers (PCRs) that store measure-
ments (e.g., SHA-1 hashes) of integrity- relevant events. Measurements taken on the
system are extended into the PCRs to form an append-only hash-chain. A relying party
then requests an attestation of the recorded measurements by first providing a nonce
for freshness. In response, the TPM generates a digital signature, called a quote, over
its PCR values and the nonce. An asymmetric private key called an Attestation Identity
Key (AIK) is used to sign this quote. The AIK is certified by a unique key burned into
the TPM by the device’s manufacturer, thereby binding the attestation to the physical
platform. The proving system then provides the quote and list of measurements to the
relying party. If the quote’s signature is valid and the measurement list produces the same
hash-chain as the quoted PCRs, then the measurements came from the proving system.

2.2 Integrity Monitoring Challenges

For the integrity monitor to verify system integrity accurately, its view of the proving
system must be both fresh and complete. Stale or incomplete measurements limit the
utility of the verification process. However, we find that current attestation-based veri-
fication model are insufficient for several reasons.

Stale Measurements. Attestation-based protocols introduce a window of uncertainty,
which we illustrate in Figure 2. Here, the integrity monitor residing on the relying party
requests an attestation at time t and finds it satisfies its integrity criteria. Since the prover

184 J. Schiffman, H. Vijayakumar, and T. Jaeger

Unverified Window

Proving
System

t t+2

AttestationAttestationRelying
Party

Integrity
Monitor Data

t+1

Fig. 2. A window between each attestation exists where the integrity of the proving system is
unknown

is verified, the monitor permits it to send data to the relying party at t + 1. Later, the
monitor requests a second attestation at t+2 and finds the prover no longer satisfies the
criteria. Because this violation could have happened at anytime between t and t + 2, it
is not clear without additional information if the data at t + 1 was generated when the
system was unacceptable. Classic attestation protocols like IMA [43] avoid this issue
by buffering inputs until a later attestation is received, but this is not an option for high
throughput or interactive applications.

Hardware Bottleneck. Many systems are dynamic and undergo numerous changes at
any time. Thus, the monitor must continually poll for new attestations to detect changes.
This problem is exacerbated by the TPM’s design as a low performance device for at-
testing infrequent loadtime measurements like the boot process. In fact, current TPM
implementations take approximately one second to generate a quote leading to major
bottlenecks in any high demand scenario [59]. Designs that batch remote attestations
to eliminate queueing delays have been proposed [34], but still incur a significant over-
head.

Criteria Insensitive Measurements. A relying party’s ability to assess system integrity
is also limited by what events are measured. Since the proving system’s administrator
decides what the measurement framework will record, a remote verifier must often set-
tle for the information provided by proving system. If that system provides only hashes
of code loading operations, then a criteria requiring knowledge the possible runtime
operations of those processes cannot be satisfied. However, it is difficult to know what
information arbitrary clients require, which is especially challenging for public-facing
services used across multiple administrative domains. On the other hand, designing an
IM framework to record excessive measurements may be wasteful if they are inconse-
quential to the verifier’s integrity criteria. Moreover, complex events occurring within
an entity like may be difficult to assess. For example changes to kernel memory may
indicate a rootkit, but it is hard to make that judgement without knowledge of where
certain data structures are located. However, providing this context (i.e., entire memory
layouts) via attestation can be impractical.

3 Integrity Verification Proxy

We now present the design of the integrity verification proxy (IVP), an integrity monitor
framework that verifies system integrity at the proving system on behalf of the relying

Verifying System Integrity by Proxy 185

Proving System

Integrity Verification Proxy

 Resident VM

Measure

Relying Party

IVP Integrity
Monitor Attestation Monitor

Measure

Fig. 3. The integrity verification proxy (IVP) acts as an integrity monitor on the proving system
that monitors the resident VM to enforce the relying party’s criteria over the communication
channel. The long-term integrity of the IVP and its host (i.e., layers below the resident VM) is
verified by traditional loadtime attestation.

party. By shifting a portion of the integrity monitor to the proving system, the IVP
eliminates the need for continuous remote attestation and provides direct access to the
system’s IM framework to support a broad range of integrity criteria. We begin by
describing our design goals and trust assumptions. We then give an overview of the
IVP’s architecture and detail how it achieves these goals.

3.1 Design Goals

Our aim is to extend the traditional notion of an integrity monitor into the proving sys-
tem to overcome the limitations of current attestation-based verification protocols. Fig-
ure 3 shows the conceptual model of this approach. This model supports the following
design goals.

Enforce Integrity Criteria at the Proving System. Monitoring system integrity remotely
is insufficient because stale knowledge of the remote system’s more complex events un-
dermines the monitor’s ability to correctly enforce its criteria. Instead, a relying party
can establish trust in an integrity monitor on the proving system that enforces its in-
tegrity criteria. The IVP has direct access to resident VM’s IM framework to eliminate
the window of uncertainty caused by attestation protocols. Moreover, the IVP can ter-
minate connections immediately when an integrity violation is detected to protect the
relying party. If the relying party is also the administrator of the VM, the IVP can take
further remedial measures such as rebooting the VM. However, the relying party must
still monitor the IVP itself to justify such trust. Thus, the IVP must be deployed at a
software layer whose integrity can be verified by the relying party without the need
for continual attestation, or the purpose of moving monitoring to the proving system is
defeated.

Criteria-Relevant Measurement. The problem with traditional IM frameworks is that
they measure events irrespective of what the relying party requires. Moreover, entities
on the resident VM may be implicitly trusted by the administrator and thus are not moni-
tored. An effective IVP must support various integrity criteria that may even differ from
administrator’s criteria. To do this, the IVP leverages the available information about

186 J. Schiffman, H. Vijayakumar, and T. Jaeger

the resident VM to capture a broad set of integrity-relevant events to support differing
criteria. In Figure 3, the IVP extracts information from both the IM framework on the
proving system and additional information through external measurement techniques
like VM introspection.

3.2 Assumptions

We make the following trust assumptions in the IVP design. First, we do not consider
physical attacks on hardware, denial-of-service attacks, or weaknesses in cryptographic
schemes. Next, we assume that the relying party and all the events allowed by the in-
tegrity criteria to be trustworthy. Moreover, we treat events that cannot be captured by
the IM framework to be acceptable because we cannot say anything about their exis-
tence. It is important to note that such unobserved events may be harmful, but unless a
mechanism can detect the degradation, it is hard to know the harm that has occurred.
We consider the following threats in the IVP design. We assume a powerful external
adversary who can produce external events upon the proving system that may exploit
vulnerabilities. Such external events may affect both loadtime (e.g., modify files in a
downloaded distribution) and runtime events (e.g., network communications). Finally,
we consider attacks that modify remote storage and offline attacks on the proving sys-
tem’s local disk.

3.3 Architecture Overview

Figure 4 illustrates our architecture for enforcing the integrity criteria of a relying party
(the client) over a network connection to an application VM. Here, the IVP is a service
resident in the VM’s host that verifies the integrity of the VM on behalf of the client.
The client first (1) registers her integrity criteria with the IVP service. Next, (2) she
establishes trust in the VM’s host and IVP service by verifying their integrity through
traditional attestation protocols. These components are designed to maintain their in-
tegrity at runtime, thereby enabling simple verification through loadtime measurements
similar to existing protocols like IMA [43]. This verification is needed to trust the IVP
to correctly enforce her criteria.

The client then requests a connection to a specific hosted VM the criteria to en-
force over the channel. The IVP’s integrity monitor is responsible for tracking the
ongoing integrity of the hosted VMs relative to the client’s criteria. It uses a set of
measurement modules to interface directly with the host’s IM framework and capture

Client

VM Host

VM

Channel
Mediator

IVP(1) Register criteria

(2) Verify IVP

(3) Verify VM

(4) Connect

(5) Report Violation

Integrity
Monitor

Modules
Monitor VM

Fig. 4. Integrity verification proxy architecture

Verifying System Integrity by Proxy 187

integrity-relevant events, which are reported back to the monitor. If the monitor (3)
determines that the VM satisfies the client’s criteria, it then (4) establishes a secured
network tunnel between the client and VM through the IVP’s channel mediator. The
mediator associates each tunnel with the client’s criteria. If the integrity monitor detects
a that a VM has violated the criteria of any connect client, it notifies the mediator to (5)
terminate each associated connection.

3.4 Verifying the IVP Platform

The IVP verifies VM integrity on behalf of the client, thereby requiring trust in the
IVP. Since our aim is to reduce client verification effort and eliminate the need for
repeated remote attestation, we want an IVP that can be verified by a single attestation
at channel setup unless a reboot occurs. The challenge is then building IVPs and their
hosting platform in such a way that they maintain their integrity to obviate the need for
remote monitoring.

This endeavor is difficult in general because systems often have large TCBs con-
sisting of numerous components that may not be trusted. Moreover, changes to these
systems at runtime like upgrades may be overlooked without frequent monitoring. How-
ever, various research projects have explored techniques for building VM hosting plat-
forms that may be small enough to verify formally [27,3,5,57,32,58]. While the design
of a specific platform is outside the scope of this paper, we envision a host would incor-
porate such approaches. As for the IVP, it only relies on a small number of services, such
as networking, the introspection interface, and VM management. Research projects like
Proxos [61] and work by Murray et. al. [35], have demonstrated that it is possible to
build minimal VMs that depend only on the VMM and use untrusted services in other
VMs securely (e.g., by encrypting and integrity-protecting the data). This would enable
the IVP to function as an independent service in the host without depending on a large
host VM like in Xen Dom0. We intend to develop future IVP prototypes for various
hypervisors that support this separation.

3.5 Channel Mediation

The IVP is responsible for mediating connections to ensure they are active only when
their respective client’s criteria are satisfied. The channel mediator creates an integrity
association (IA) for each tunnel as the tuple (C, V, I), where C is the client, V is the
VM, and I is the integrity criteria to check. Before a tunnel is brought up, the IA is
registered with the integrity monitor to verify that V continues to satisfy I . If it does,
the tunnel is brought up and shutdown either voluntarily or when the integrity monitor
notifies the mediator that an I has been violated.

One challenge in designing the channel mediator is proving to clients that the channel
is controlled and protected by the proxy. The connection is formed as an Ethernet tunnel
between the client and the VM through a virtual network managed by the mediator.
This effectively places the client and VM on the same local subnet. Other mediated
connections to the VM connect over the same virtual network, but are isolated from
each other by the mediator using VLAN tagging. During setup, the tunnel is protected
via cryptographic protocols like TLS that mutually authenticate the client and mediator.

188 J. Schiffman, H. Vijayakumar, and T. Jaeger

The VM is provided a certificate signed by the host’s TPM at boot time to bind the
platform’s identity to the VM’s credentials. This binding approach is similar to previous
work on VM attestation [9,19]. The client can then setup further protections directly
with the VM over the tunnel. Having direct control over the network tunnel also lets the
mediator tear down the connections as soon as a violation is detected.

3.6 Integrity Monitoring

The IVP’s integrity monitor is tasked with verifying each VM’s integrity against in-
tegrity criteria registered by clients connected to it. To do this, the monitor collects
events from its measurement modules (see Section 3.7) to update its view of each VM’s
configuration. When the mediator registers an IA, the monitor first checks if the IA’s
criteria is satisfied by the current VM configuration. If so, the monitor adds a reference
to the IA to a list of IAs to verify. When the VM’s configuration changes, (e.g., through
code loading) the integrity monitor pauses the VM and checks whether any registered
IA has been violated. If so, the channel mediator is notified of the invalid IA, so it may
tear down the tunnel before the VM can send data on it. The monitor then resumes
execution of the VM.

In order to verify a VM’s integrity, the monitor must be able to capture all integrity-
relevant changes from VM creation until shutdown. To monitor loadtime events, we
give the integrity monitor direct control over VM creation through the platform inde-
pendent virtualization API, libvirt. This lets the monitor collect information about the
VM’s virtual hardware, initial boot parameters, kernel version, and disk image. The
monitor spawns individual watcher threads for each VM and registers with the IVP’s
measurement modules. When the modules capture an event at runtime, the watcher is
alerted with the details of the change. Since multiple IAs to the same VM may have
redundant requirements to verify, the monitor keeps a lookup table that maps IAs with
the same criterion together. When a change to the VM is detected that violates one of
these conditions, all IAs mapped to that criterion are invalidated by the monitor.

3.7 Measurement Modules

Integrity criteria consist of various loadtime and runtime requirements. The integrity
monitor divides up these criteria into a set of discrete measurement modules tasked
with tracking changes to specific aspects of the VM’s configuration. The modules in-
terface directly with the available IM framework to measure events in real time. For
example, loadtime modules measure information like boot time parameters of the VM,
while runtime modules attach a VMI to watch critical data structures. Since IM frame-
works often consist of several components responsible for measuring various events,
modularizing the interface allows for a more flexible design. Administrators can then
write or obtain modules for the specific IM mechanism installed on the host without
having to modify the monitor.

Capturing Runtime Events. Detecting violations at runtime requires modules to be
able to capture events as they happen. The module must then notify the integrity mon-
itor’s watcher of the event before the VM continues to execute. We employ VMI to

Verifying System Integrity by Proxy 189

enable our modules to monitor runtime criterion. Many hypervisors now offer VMI
mechanisms like xenaccess [40,15,21] in Xen and VMSafe [66] for VMware that en-
able direct access to VM resources. In addition, QEMU supports introspection through
debugging tools like gdb and previous work has demonstrated the feasibility of VMI
in KVM [50].

Each runtime module monitors a specific property on the VM. The modules actively
monitor the VMs by setting watchpoints (e.g., locations in memory) that are triggered
by integrity-relevant operations. Watchpoints can be set on sensitive data structures or
regions of memory such as enforcement hooks [53], and policy vectors [37] stored
in kernel memory. Other structures like function pointers and control flow variables
are possible candidates [11]. Triggering a watchpoint pauses the executing VM so the
module that set the watchpoint can examine the how the configuration has been al-
tered. Pausing the VM prevents the VM from sending any data on the connection until
the module can assess if the event violated an IA’s criteria. After the module finishes
invalidating any IAs, the VM is permitted to resume execution.

Improving Efficiency. VMI gives runtime modules direct memory access, but creates a
semantic gap [12] when reading directly from the VM’s memory. Since the module does
not have the full context of the running system, changes to complex and userspace data
structures are difficult to assess. Our modules leverage the VM’s extant enforcement
mechanisms to report events without having to pause the VM as often. For example,
instead of pausing the VM to measure every executed program, we use Linux kernel’s
Integrity Module (LIM) [29] framework to record hashes of every previously unseen
program and executable memory-mapped file before loading them. We set a watchpoint
on the in-kernel measurement list to catch each addition to it. This way, the module can
avoid pausing except when LIM detects new binaries. Other in-VM monitor techniques
could be leveraged to report integrity measurements to the modules to reduce the over-
head of pausing the VM. Virtual devices like the vTPM [9] and co-resident monitors
like SIM [50] provide potential reporting frameworks.

4 Implementing an IVP

We implemented a proof-of-concept IVP for a Linux KVM system. Figure 5 illustrates
the IVP’s services residing in the host. Clients interact with the IVP through a proxy
manager to (1) register their criteria, (2) request attestations of the host’s configuration,
and (3) manage connections to VMs. We used a TLS-protected VPN tunnel to the VM’s
virtualized private network to implement the IVP’s channel mediator. Initially, VMs are
firewalled from the client’s tunnel and all clients are isolated from each other through
the VPN as well. Once the tunnel is active, a client can establish an IA with a specific
VM by first (3a) sending a request to the proxy manager and specifying which criteria
previously registered should be used to mediate that connection. The proxy manager
then creates the IA tuple and (3b) registers it with the integrity monitor, which in turn
checks if the client’s criteria are satisfied by the VM. If it is, the monitor (3c) informs the
proxy manager to change the VPN firewall to allow the VM to send data to the client
over the tunnel. The client can now receive data from the monitored VM as well as
(4) authenticate the identity of the VM to establish an encrypted connection if desired.

190 J. Schiffman, H. Vijayakumar, and T. Jaeger

Host

Integrity
Monitor

VPN
Server

Proxy
Manager

Guest DomainClient
Application

(2) Verify
host's integrity

(3c) Confirms that
new IA is valid

Virtualized
Hardware

Endpoint
Authentication

Userspace

Set hardware
watchpoints

(3a) Request
new IA

(5) Kill invalid IAs

(1) Register
criteria

(4) Authenticate
endpoint

GDB / MI

Modules

(3b) Registers new IA

Fig. 5. IVP implementation and protocol

Finally, if at anytime the VM violates the IA’s criteria, the integrity monitor (5) deletes
the IA and informs the VPN server to firewall the client tunnel from the VM.

4.1 Verifying the Host

To verify the IVP platform’s integrity, we use the Root of Trust for Installation (ROTI)
approach to attest to the trusted distribution of the host [46]. At install time, a TPM
signed proof is generated that binds the installed filesystem to the installer that
produced it. We also employ the tboot bootloader to establish a measured launch
environment (MLE) for the host using Intel’s Trusted eXecution Technology (TXT)
in recent CPUs [22]. The MLE establishes a dynamic root of trust for measurement
(DRTM) through the processor that isolates, measures, and executes the kernel and ini-
tial ramdisk (initrd). This allows the boot process to be started from a trusted starting
point. The initrd loads the system enforcement policies into the kernel and takes a mea-
surement of the current filesystem before passing execution off to the root filesystem.
When a client requests an attestation of the IVP platform, the ROTI proof is included
with the normal attestation. The client then checks that the proof indicates no tamper-
ing with the installation has occurred and that the installer source is trusted to produce
a system designed to maintain its integrity at runtime to meet the long-term integrity
requirements of the IVP platform.

4.2 Channel Mediator

We implemented the channel mediator using OpenVPN server to manage Ethernet tun-
nels from remote clients to the internal virtualized network for the hosted VMs. All
mediated connections from the client are aggregated through a single VPN tunnel with
the individual VM endpoints permitted to transmit on that tunnel if a corresponding IA

Verifying System Integrity by Proxy 191

exists. VPN tunnels are established by first mutually authenticating the client’s account
certificate and a host certificate signed by the host’s AIK. Each connection is TLS-
protected and uses a Linux tap device to provide kernel supported Ethernet tunneling
from the physical network interface to the virtual network bridge. Once connected, the
OpenVPN server opens the firewall for traffic from the VM’s virtual interface to the
tunnel for each VM in the active IAs to the client. When the integrity monitor deletes
an IA, it tells the OpenVPN server to firewall the VM from the client in the deleted IA.

4.3 Integrity Monitor

We created the integrity monitor as a 439 SLOC Python daemon that manages VM ex-
ecution and monitors VM integrity. The daemon uses the hypervisor independent inter-
face, libvirt, to start and stop VMs, collect information about virtual device settings, and
control loadtime VM parameters. When the daemon receives a request to start a VM, it
spawns a separate watcher thread to control the VM and monitor integrity information.
When the proxy manager registers a new IA with the monitor, the monitor forwards the
IA to the appropriate VM’s watcher, which in turn checks that each criterion is satisfied
by querying the registered measurement modules for current VM configuration. If all
the modules indicate the requirements are satisfied, the watcher notifies the VPN server
that the IA is valid.

The watcher registers with loadtime measurement modules to collect information
about the VM before the VM is started. Next, the VM is created and the watcher at-
taches gdb to running VM process, which pauses the VM. We use gdb as a proof of
concept VMI interface because VMs in Linux KVM run as userspace processes, mak-
ing them it simple to monitor. Moreover,gdb can determine where kernel structures are
in memory by reading debug information in the kernel or from a separate system map
file that is easily obtained. The watcher then loads the runtime modules, which collect
the necessary context from the paused VM and set any desired watchpoints through the
gdb interface. After the runtime modules are registered, the VM resumes execution.
When watchpoints are triggered at runtime, the VM is paused and control is passed
from the watcher to the runtime module that set it. The module then introspects into the
VM’s memory and updates the accumulated VM configuration with any modified val-
ues detected during introspection. The module notifies the watcher if any values have
changed, which checks if those changes have violated any of the registered IA’s criteria.
Finally, the module resumes the VM’s execution.

We use hardware-assisted watchpoints in gdb to avoid modifying the VM code and
introducing additional overhead. This raises an issue because the x86 architecture only
contains 4 debug registers, which limits the number of hardware-assisted watchpoints
that can be set for a process. Since software watchpoints require single stepping through
the VM’s execution, they are not a viable option. However, similar watchpoint function-
ally is feasible by using memory protection features of the KVM shadow page table for
VMs as demonstrated in SIM [50]. While we did not implement this VMI approach, we
plan to explore it and further implementation options in future work.

192 J. Schiffman, H. Vijayakumar, and T. Jaeger

5 Evaluation

We evaluated our IVP implementation in terms of functionality and performance. First,
we validated the IVP’s ability enforce relying party criteria correctly by performing
attacks that violated various integrity requirements. We then evaluated the performance
overhead imposed on the monitored VM using both micro-benchmarks and application-
level benchmarks performance.

Our experimental testbed consisted of a Dell OptiPlex 980 with a 3.46GHz Intel
Core i5 Dual Core Processor, 8GB of RAM, and a 500GB SATA 3.0Gb/s hard disk.
The Linux KVM host ran in an Ubuntu 10.10 distribution using a custom 2.6.35 Linux
kernel. Our guest VMs were allocated a single 3.46GHz vCPU without SMP, 1GB of
RAM, and an 8GB QCOW2 disk image connected via virtio drivers. Each VM ran an
Ubuntu Linux 10.10 server distribution with default SELinux policy and a custom LIM
module.

5.1 Functionality

To test the IVP’s functionality, we designed a target application VM running the Apache
webserver. We constructed a VM image that approximates the CW-Lite [49] integrity
model and designed an integrity criteria for verifying that approximation. We then had
a client connect to the VM through a mediated channel associated with the CW-Lite
criteria. We performed several attacks on the VM’s loadtime and runtime integrity both
before and after the connection was established to see if the IVP would correctly detect
the violations and terminate the connection.

Building a CW-Lite Enforcing VM. We constructed an application VM that satisfies
the CW-Lite integrity model. This practical integrity model differs from strict integrity
models like Biba [10] and Clark-Wilson [13] by allowing for an integrity policy that
identifies trusted exceptions where illegal flows are required for the system to function
properly. Other practical integrity models would also be viable [28,60]. To enforce CW-
Lite, trusted processes with high integrity labels (e.g. privileged daemons) must only (1)
load trustworthy code, (2) receive trustworthy inputs, and (3) handle untrusted inputs
through designated filtering interfaces that can upgrade or discard low integrity data.

We configured our Apache VM with SELinux, which enforces a mandatory access
control policy through Domain Type Enforcement [6]. This labels every process and
system object with policy-defined types. We use the Gokyo [24] policy analysis tool
to identify 79 labels from which data can flow to the Apache process and system TCB
labels [49]. This included processes that access critical resources like kernel interfaces
and privileged daemons. We then modified SELinux LSM to hook into the kernel’s
LIM [29] to receive hashes of code executed in trusted processes. The modified LSM
module then denies execution of hashes that are not on a white list obtained from the
Ubuntu 10.10 main repository. This secure execution monitor satisfies the first CW-Lite
requirement because only trusted code from the hash list may run in trusted processes.

In addition to the identified trusted processes, several untrusted sources like the net-
work provide necessary input to Apache. Per the third CW-Lite requirement, we must

Verifying System Integrity by Proxy 193

ensure untrusted inputs are only received by interfaces1 designed to properly handle
(e.g. sanitize) such input. To do this, we added additional checks to the LIM policy to
whitelist only the Apache binary, designed to handle such inputs, to be loaded into the
process with labels to access these interfaces. Before the interface is permitted to read
data, our modified SELinux LSM checks if the interface is intended to receive untrusted
data based on a CW-Lite policy and deny the read if it is not.

Specifying Integrity Criteria. We defined our client’s integrity criteria with both load-
time and runtime requirements. For loadtime criteria, we specified hashes of a trusted
VM disk image, kernel, initrd, and CW-Lite enforcement policies to match those we
created above. The runtime criteria, by contrast, checks for common signs of intrusion
by rootkits and unexpected modification of the VM’s enforcement mechanisms and
policies at runtime.

For example, previous research [7] has shown that some rootkits modify the netfilter
hook in the kernel to enable remote control of the system via specially crafted network
packets [36]. Other attacks replace the binary format handlers to obtain privilege es-
calation triggered by program execution. We specified runtime criteria that require no
changes to the kernel structures located by the kernel symbols nf hooks for the netfil-
ter andformats for binary format handlers attacks. We also identified function pointers
used to hook execution by SELinux and LIM and in-kernel policy structures that should
not be modified at runtime. Furthermore, we specified that only the Ubuntu repository
code was to be executed in the TCB, which would catch the case where the secure exe-
cution protections were bypassed. To do this, we specified that all measurements of code
loads taken by the LIM hooks should match the hash list we specified above.

Building Measurement Modules. We constructed several measurement modules to
monitor various integrity requirements on the target VM. The modules were written in
an inheritable base class that exposes a register function for setting watchpoints and a
callback handler that is called when the watchpoint is triggered. Each module averaged
25 additional lines over the base class definition. The integrity monitor’s watcher thread
instantiates and registers loadtime modules before the VM is first created to measure
the kernel, disk image, and enforcement policies.

Runtime modules are instantiated after VM initialization and set watchpoints through
the gdb interface. When a watchpoint is triggered, the watcher is notified and invokes
the appropriate module’s callback to inspect the event. We placed watchpoints on var-
ious kernel structures including SELinux, LIM, and netfilter function pointers and the
binary format handler list. We also monitored the in-kernel LIM policy by set a watch-
point on the kernel’s ima measurements list head. This traps to the runtime module
whenever a new binary is executed. The module reads the hash from the list tail and adds
it to the module’s list of measured code. Doing this, we can monitor all code loaded in
the TCB and check for inconsistencies between the expected LIM policy and executing
programs. Leveraging the LIM framework to record new code hashes lets the integrity
monitor pause the VM only when new binaries are loaded.

1 Interface here refers to the read-like syscalls. While programs have many interfaces, only some
are intended to handle untrusted inputs.

194 J. Schiffman, H. Vijayakumar, and T. Jaeger

Detecting Violations. We tested if the IVP properly mediates the CW-Lite criteria be-
fore and after connecting a client to the VM over the mediated channel. We exercised
each measurement module through a series of attacks on the VM’s integrity. For load-
time modules, we modified boot parameters, kernel versions, disk image contents, and
policy files to values not permitted by the criteria. The modules then recorded these con-
figuration values at VM creation. When the client initiated connection request to the IVP,
the integrity monitor’s watcher compared the measured values to the criteria and correctly
rejected the connection. For our runtime modules, deployed attacks on the monitored data
structures using attack code that exploits an x86 compatibility vulnerability in Linux ker-
nels older than 2.6.36 [14]. This let us illegally change an unprivileged process’ SELinux
label to the full privileged kernel t label, thereby enabling arbitrary code execution.
We used this vector to easily modify kernel memory and modify the monitored struc-
tures to violate our runtime requirements. The IVP correctly detected these changes and
disconnected the connection to the VM and prevented future connection requests.

5.2 Performance

Next, we examined the performance impact the IVP has on monitored application VMs.
We first performed a series of CPU and I/O micro-benchmarks within the monitored
VM to identify any overhead in system performance indicators. We then performed
macro-benchmarks with a webserver and distributed compilation VM to see the impact
at the application-level.

Passive Overhead. We first evaluated the impact of runtime monitoring on the VM
when integrity-relevant events are not occurring. We used three types of benchmarks to
test CPU, network, and disk performance of the VM with and without the IVP active.
For CPU-bound benchmarking, we used the SPECINT 2006 test suite (see Table 1),
which performs several training runs to identify the expected standard deviation (under
1.1%) before sampling. Most tests show negligible overhead with the IVP with the
largest at 0.61%.

Table 3 shows our results for network and disk benchmarks after 30 runs of each.
We used netperf to evaluate network overhead. It samples maximum throughput
and transactions per second after saturating the network link. These tests also indi-
cated negligible impact on networking. For disk I/O performance, we used the dbench
benchmarking tool, which simulates a range of filesystem level operations using a con-
figurable range of parallel processes. It presents results as the average throughput for
the client processes. We found that the throughput was negatively affected as we in-
creased the number of simultaneous clients. Our intuition for this trend was that more
client processes led to more syscalls that, in turn, cause the VM process to raise signals
to perform I/O through virtual devices. We profiled the VM with systrace while the
benchmarks were executing and confirm this correlation. Since gdb uses the ptrace
interface in the kernel to monitor processes for debug signals, every syscall incurred
a small processing overhead by gdb to parse the signal and resume process execu-
tion. A possible solution for this would be to modify the ptrace interface to notify the
gdb process only when debug signals are raised. Even with this overhead, our disk I/O
benchmarks demonstrate overhead under 8% for 50 clients.

Verifying System Integrity by Proxy 195

Table 1. Benchmarks with and without the
IVP obtained by the median of three runs, as
reported by the SPECINT 2006. The test suite
does training and test runs in addition to the
actual runs so the results are reproducible.

SPECINT ’06 Median (sec) Diff
Benchmarks Base Test (%)
perlbench 403 404 0.25
bzip2 683 686 0.43
gcc 367 369 0.54
mcf 557 560 0.53
gobmk 467 467 0.00
hmmer 544 545 0.18
sjeng 575 576 0.17
libquantum 664 667 0.45
h264ref 762 763 0.13
omnetpp 494 497 0.61
astar 664 667 0.45

Table 2. Active Overhead Micro-benchmarks
of overhead incurred when watchpoint is trig-
gered. World switches and GDB contributes
82.2% of the trigger overhead excluding mod-
ules. Collected from 100 runs.

Operation Mean (± 95% CI) (ms)
Watchpoint Trigger
VM Exit and Entry .006 (± 0.000)
QEMU overhead .496 (± 0.081)
GDB overhead .327 (± 0.054)
Monitor Overhead 0.172 (± 0.028)
Runtime Modules
Collect LIM Hash 66.76 (± 0.215)
Read kernel variable 0.132 (± 0.002)

We also tested the effect of our IVP on two real-world applications, an Apache web-
server and a distcc compilation VM. We initiated all of our tests from a separate
computer over the TLS-protected VPN tunnel setup by the IVP. We ran 30 runs of the
ab tool to simulate 100 concurrent clients performing 100,000 requests on the Apache
VM. For the distcc test, we compiled Apache-2.2.19 across 3 identical VMs on sep-
arate machines with 8 concurrent threads. Again, the average of 30 such runs are taken.
Our results show that the IVP introduced a 1.44% and 0.38% overhead on Apache and
distcc VMs, respectively. We suspect the primary cause for the Apache overhead is the
frequent network requests and disk accesses made to service the requests.

Active Overhead. Finally, we explored the delays introduced by the IVP when han-
dling changes to monitored data structures. We profiled our measurement modules us-
ing the ftrace framework in the Linux kernel by setting markers to synchronize timings
between our userspace monitor and events happening in the kernel, such as VM exits
and enters. Table 2 shows that interrupting the VM on a tripped watchpoint introduces
a 1 ms pause regardless of the measurement module involved. For simple runtime mod-
ules that read single variables, approximately 100µs additional overhead is incurred.
However, more complex measurement modules take more time. For example, the LIM
measurement module reads a SHA1 hash from a nested kernel list, which causes a 67 ms
delay. We found the majority of this is caused by gdb parsing the kernel symbol table
to locate the memory addresses in the VM to read. Caching these addresses when the
monitor is registered would greatly speed this measurement process. Regardless, mea-
surement modules that perform more complex measurements like reading and parsing
multiple structures will increase the time the VM is paused. Moreover, watchpoints on
frequently modified memory locations will result in more pauses.

196 J. Schiffman, H. Vijayakumar, and T. Jaeger

6 Related Work

Introduction of the TPM has led to numerous IM techniques (see the comprehensive
survey by Parno et. al. [39]). Initial approaches focused on TCG-style verification of
the boot process, the OS kernel, modules, userspace binaries [43,29] and system poli-
cies [23]. Application-level measurements through frameworks like Trousers [65] en-
able processes to pass measurements to the TPM for integrity protection and report-
ing. Other techniques measured VM integrity through hypervisor support [16,44,31]
and even virtualized the TPM for VMs [9]. More recently, Sirer et. al. [52] proposed
an authorization logic supported by a custom OS kernel that enables verification us-
ing high-level statements instead of binary hashes. This approach greatly simplifies the
complexity of verifying attestations and provides a richer measurement framework for
both local and remote entities. However, these approaches place the verification burden
on the relying party to interpret potentially stale and incomplete information. The IVP
can leverage these disparate measurement techniques to verify a relying party’s criteria
at the proving system and supplement them with more fine-grain monitoring.

Other approaches have focused on reducing the TCB that must be verified. Bind [51],
Flicker [33], and TrustVisor [32] use CPU hardware support to measure and protect
the execution environment of application code and associate it with the computation’s
result. These approaches provide guarantees to the relying party that the result was
protected from external threats during execution, but still require verification of each
result’s attestation.

Instead of attesting system configurations, other research has focused on maintaining
runtime integrity guarantees [47,30,17,50,45,5,56] that remote parties can verify are
being enforced. For example, Terra’s Optimistic Attestation ensure certain VM disk
blocks are unaltered by shutting down the VM if a modification is detected at loadtime.
These approaches offer a strong foundation for monitoring runtime integrity, but do not
support verifying remote verifier specified requirements. Our IVP can leverage these
runtime enforcement mechanisms to maintain the IVP host’s integrity. Furthermore,
remote parties can use the IVP to monitor the integrity of enforcement mechanisms in
the VM and their policies. Also, our design does not explicitly provide remediation like
shutting down the VM because we assume the remote clients are not administrators of
the VM and may have differing criteria.

IM has also been incorporated into secure communication channels. Trusted Net-
work Connect [63] requests periodic attestations of clients before and after they join
a private network and evicts systems with invalid attestations. OpenTC PET [38] uses
SSL proxies in a VM host to provide attestations of the VM to the remote client. How-
ever, the proxy simply provides attestations instead of verifying the VM’s integrity on
behalf of the connected client. Other work [19,62,9,18] has incorporated TPM attesta-
tions into public key certificates to bind integrity states to platform identities. However,
the reported integrity of these approaches is only valid as long as the attested system’s
configuration does not change. This requires the client to continually request new cer-
tificates that function exactly like attestations. Our IVP eliminates the need for continual
polling by enforcing the client’s criteria at the VM’s host.

Verifying System Integrity by Proxy 197

Table 3. Network and disk benchmarks. netperf measures throughput (tcp stream) and
transactions per second (tcp rr) after 30 second network saturation. dbench measures 20 sec-
onds disk throughput intervals during a 10 minute read / write workload after 2 minute warmup.
30 runs per benchmark.

Benchmarks Mean ± 95% CI Diff
Baseline With IVP (%)

Network: netperf
TCP STREAM (Mb/s) 268 ± 0.23 269 ± 0.22 0.2
TCP RR (Trans/s) 1141 ± 5.65 1141 ± 1.96 0.05
Disk: dbench
1 Client (Mb/s) 11.14 ± 0.02 11.12 ± 0.14 0.18
5 Clients (Mb/s) 32.64 ± 0.67 32.49 ± 0.76 0.46
10 Clients (Mb/s) 40.94 ± 1.01 40.21 ± 0.98 1.78
20 Clients (Mb/s) 47.46 ± 1.50 44.69 ± 1.12 5.83
50 Clients (Mb/s) 40.58 ± 3.09 37.41 ± 1.86 7.81

7 Conclusion

In this paper, we presented the integrity verification proxy (IVP), a service resident in
a proving system that mediates connections on behalf of remote clients. By shifting the
task of monitoring a client’s integrity criteria to the proving system’s host, we enable
relying parties to connect to remote systems without the need for frequent attestations
or further verification. We designed and implemented a proof of concept IVP for a
Linux KVM host and evaluated its effectiveness and impact on performance. Our results
show the IVP incurs only minor overhead for network and CPU-bound applications,
but with additional delay that increases modestly as a function of I/O load. As future
work, we plan to improve our VMI interface to minimize passive overhead and increase
expressiveness of client’s integrity criteria.

References

1. Processor-Based Virtualization, AMD64 Style,
http://developer.amd.com/documentation/articles/pages/
630200615.aspx

2. Anderson, J.P.: Computer Security Technology Planning Study. Tech. Rep. ESD-TR-73-51,
The Mitre Corporation, Air Force Electronic Systems Division, Hanscom AFB, Badford,
MA (1972)

3. Andronick, J., Greenaway, D., Elphinstone, K.: Towards Proving Security in the Presence
of Large Untrusted Components. In: Proc. 5th Workshop on Systems Software Verification
(2010)

4. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A Secure and Reliable Bootstrap Architecture. In:
Proc. IEEE SSP (1997)

5. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry: Enabling
Stealthy In-Context Measurement of Hypervisor Integrity. In: Proc. 17th ACM Conference
on Computer and Communications Security (2010),
http://doi.acm.org/10.1145/1866307.1866313

http://developer.amd.com/documentation/articles/pages/630200615.aspx
http://developer.amd.com/documentation/articles/pages/630200615.aspx
http://doi.acm.org/10.1145/1866307.1866313

198 J. Schiffman, H. Vijayakumar, and T. Jaeger

6. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical domain
and type enforcement for unix. In: IEEE Symposium on Security and Privacy (1995)

7. Baliga, A., Ganapathy, V., Iftode, L.: Automatic Inference and Enforcement of Kernel Data
Structure Invariants. In: Proc. ACSAC (2008),
http://dx.doi.org/10.1109/ACSAC.2008.29

8. BBC: Amazon apologises for cloud fault one week on,
http://www.bbc.co.uk/news/business-13242782

9. Berger, S., et al.: vTPM: Virtualizing the Trusted Platform Module. In: USENIX Security
Symposium (2006)

10. Biba, K.J.: Integrity Considerations for Secure Computer Systems. Tech. Rep. MTR-3153,
MITRE (1975)

11. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel objects to
enable systematic integrity checking. In: Proceedings of the 16th ACM Conference on Com-
puter and Communications Security

12. Chen, P.M., Noble, B.D.: When Virtual Is Better Than Real. In: Proc. HotOS (2001)
13. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer Security

Policies. Security and Privacy (1987)
14. CVE-2010-3081,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3081
15. Fraser, T., Evenson, M.R., Arbaugh, W.A.: VICI Virtual Machine Introspection for Cognitive

Immunity. In: Proceedings of the 2008 ACSAC (2008),
http://dx.doi.org/10.1109/ACSAC.2008.33

16. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual Machine-Based
Platform for Trusted Computing. In: Proc. 19th ACM SOSP (2003)

17. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: Proc. NDSS (2003)

18. Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond Secure Channels. In:
Proc. ACM Workshop on Scalable Trusted Computing (2007)

19. Goldman, K., Perez, R., Sailer, R.: Linking Remote Attestation to Secure Tunnel
Endpoints. In: Proc. First ACM Workshop on Scalable Trusted Computing (2006),
http://doi.acm.org/10.1145/1179474.1179481

20. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: a virtual machine directed
approach to trusted computing. In: Proceedings of the 3rd Conference on Virtual Machine
Research And Technology Symposium (2004)

21. Hay, B., Nance, K.: Forensics examination of volatile system data using virtual introspection.
SIGOPS Oper. Syst. Rev. 42, 74–82 (2008)

22. Trusted Execution Technology, http://www.intel.com/technology/security/
23. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measurement Archi-

tecture. In: Proc. 11th ACM SACMAT (2006)
24. Jaeger, T., Sailer, R., Zhang, X.: Analyzing Integrity Protection in the SELinux Example

Policy. In: Proc. 12th USENIX-SS (2003)
25. Joshi, A., King, S.T., Dunlap, G.W., Chen, P.M.: Detecting past and present intrusions

through vulnerability-specific predicates. In: SOSP. ACM (2005)
26. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer systems. In:

USENIX Security Symposium (2003),
http://portal.acm.org/citation.cfm?id=1251353.1251374

27. Klein, G., et al.: seL4: Formal Verification of an OS Kernel. In: SOSP (2009)
28. Li, N., Mao, Z., Chen, H.: Usable Mandatory Integrity Protection for Operating Systems. In:

Proc. IEEE SSP (2007)
29. Integrity: Linux Integrity Module(LIM), http://lwn.net/Articles/287790/

http://dx.doi.org/10.1109/ACSAC.2008.29
http://www.bbc.co.uk/news/business-13242782
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3081
http://dx.doi.org/10.1109/ACSAC.2008.33
http://doi.acm.org/10.1145/1179474.1179481
http://www.intel.com/technology/security/
http://portal.acm.org/citation.cfm?id=1251353.1251374
http://lwn.net/Articles/287790/

Verifying System Integrity by Proxy 199

30. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor Support for Identifying Covertly Execut-
ing Binaries. In: Proc. 17th Usenix Security Symposium (2008)

31. Maruyama, H., Seliger, F., Nagaratnam, N., Ebringer, T., Munetoh, S., Yoshihama, S., Naka-
mura, T.: Trusted Platform on Demand. Tech. Rep. RT0564. IBM (2004)

32. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Efficient
TCB Reduction and Attestation. In: Proc. IEEE SSP (2010),
http://dx.doi.org/10.1109/SP.2010.17

33. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An Execution In-
frastructure for TCB Minimization. In: Proc. 3rd ACM SIGOPS/EuroSys (2008)

34. Moyer, T., Butler, K., Schiffman, J., McDaniel, P., Jaeger, T.: Scalable Asynchronous Web
Content Attestation. In: ACSAC 2009 (2009)

35. Murray, D.G., Milos, G., Hand, S.: Improving xen security through disaggregation. In: VEE.
VEE 2008. ACM (2008)

36. Linux Kernel Backdoors And Their Detection,
http://invisiblethings.org/papers/ITUnderground2004
Linux kernel backdoors.ppt

37. Security-enhanced linux, http://www.nsa.gov/selinux
38. OpenTC: OpenTC PET,

http://www.opentc.net/publications/OpenTC PET prototype
documentation v1.0.pdf

39. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Commodity Computers. In:
IEEE SP 2010 (2010)

40. Payne, B.D., Carbone, M., Lee, W.: Secure and Flexible Monitoring of Virtual Machines. In:
ACSAC (2007)

41. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure active mon-
itoring using virtualization. In: IEEE Symposium on Security and Privacy (May 2008)

42. Petroni, N.L., Timothy, J., Jesus, F., William, M., Arbaugh, A.: Copilot - A Coprocessor-
based Kernel Runtime Integrity Monitor. In: Proc. 13th USENIX Security Symposium
(2004)

43. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-based
Integrity Measurement Architecture. In: USENIX Security Symposium (2004)

44. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards Trusted Cloud Computing. In: HOT-
CLOUD (2009)

45. Schiffman, J., Moyer, T., Shal, C., Jaeger, T., McDaniel, P.: Justifying integrity us-
ing a virtual machine verifier. In: Annual Computer Security Applications Conference,
pp. 83–92(December 2009)

46. Schiffman, J., Moyer, T., Jaeger, T., McDaniel, P.: Network-based Root of Trust for Installa-
tion. IEEE Security & Privacy (2011)

47. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: A Tiny Hypervisor To Provide Lifetime
Kernel Code Integrity For Commodity Oses. In: Proceedings of Twenty-First ACM SOSP
(2007)

48. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: Verifying Code
Integrity And Enforcing Untampered Code Execution On Legacy Systems. In: Proceedings
of the 20th ACM SOSP (2005)

49. Shankar, U., Jaeger, T., Sailer, R.: Toward Automated Information-Flow Integrity Verification
for Security-Critical Applications. In: Proc. 2006 NDSS (2006)

50. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware virtu-
alization. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security (2009)

51. Shi, E., Perrig, A., van Doorn, L.: BIND: A Fine-Grained Attestation Service for Secure
Distributed Systems. In: IEEE SP 2005 (2005)

http://dx.doi.org/10.1109/SP.2010.17
http://invisiblethings.org/papers/ITUnderground2004_Linux_kernel_backdoors.ppt
http://invisiblethings.org/papers/ITUnderground2004_Linux_kernel_backdoors.ppt
http://www.nsa.gov/selinux
http://www.opentc.net/publications/OpenTC_PET_prototype_documentation_v1.0.pdf
http://www.opentc.net/publications/OpenTC_PET_prototype_documentation_v1.0.pdf

200 J. Schiffman, H. Vijayakumar, and T. Jaeger

52. Sirer, E.G., de Bruijn, W., Reynolds, P., Shieh, A., Walsh, K., Williams, D., Schneider, F.B.:
Logical attestation: an authorization architecture for trustworthy computing. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, New York, NY,
USA, pp. 249–264 (2011), http://doi.acm.org/10.1145/2043556.2043580

53. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux Security Module.
Tech. Rep. 01-043, NAI Labs (2001)

54. Smith, S.W.: Outbound Authentication for Programmable Secure Coprocessors. In: Goll-
mann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 72–89.
Springer, Heidelberg (2002)

55. Sony: Update on playstation network and qriocity (April 2011),
http://blog.us.playstation.com/2011/04/26/update-
on-playstation-network-and-qriocity

56. Srinivasan, D., Wang, Z., Jiang, X., Xu, D.: Process out-grafting: an efficient ”out-of-vm”
approach for fine-grained process execution monitoring. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security, New York, NY, USA, pp. 363–374
(2011), http://doi.acm.org/10.1145/2046707.2046751

57. St. Clair, L., Schiffman, J., Jaeger, T., McDaniel, P.: Establishing and Sustaining System In-
tegrity via Root of Trust Installation. In: Annual Computer Security Applications Conference
(2007)

58. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization architecture.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys 2010, pp.
209–222. ACM, New York (2010)

59. Stumpf, F., Fuchs, A., Katzenbeisser, S., Eckert, C.: Improving the scalability of platform
attestation. In: ACM Workshop on Scalable Trusted Computing (2008)

60. Sun, W., Sekar, R., Poothia, G., Karandikar, T.: Practical Proactive Integrity Preservation: A
Basis for Malware Defense. In: Proc. 2008 IEEE SSP (2008)

61. Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: making trust between applications and
operating systems configurable. In: OSDI. USENIX Association, Berkeley (2007)

62. TCG: Infrastructure Subject Key Attestation Evidence Extension Version 1.0, Revision 5.
Tech. report (2005)

63. TCG: Trusted Network Connect: Open Standards for Integrity-based Network Access Con-
trol. Technical report (2005), http://www.trustedcomputinggroup.org

64. TCG: Trusted Platform Module (2005),
https://www.trustedcomputinggroup.org/specs/TPM/

65. Trousers, http://trousers.sourceforge.net/
66. VMWare VMsafe, http://www.vmware.com/go/vmsafe

http://doi.acm.org/10.1145/2043556.2043580
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity
http://doi.acm.org/10.1145/2046707.2046751
http://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org/specs/TPM/
http://trousers.sourceforge.net/
http://www.vmware.com/go/vmsafe

	Verifying System Integrity by Proxy
	Introduction
	Remote Integrity Verification
	Integrity Verification Overview
	Integrity Monitoring Challenges

	Integrity Verification Proxy
	Design Goals
	Assumptions
	Architecture Overview
	Verifying the IVP Platform
	Channel Mediation
	Integrity Monitoring
	Measurement Modules

	Implementing an IVP
	Verifying the Host
	Channel Mediator
	Integrity Monitor

	Evaluation
	Functionality
	Performance

	Related Work
	Conclusion
	References

