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ABSTRACT
Adding new programs or configuration options to a system
often leads to new exploits because it provides adversaries
with new ways to access possible vulnerabilities. As a result,
application developers often must react to exploits as they
are found. One proactive defense is to protect programs
at their attack surfaces, the program entry points (e.g., sys-
tem calls) accessible to adversaries. However, experience has
shown that developers often fail to defend these entry points
because they do not locate all such system calls where pro-
grams access system resources controlled by attackers. In
this paper, we develop a runtime analysis method to com-
pute program attack surfaces in system deployments, which
uses a novel approach to computing program adversaries
to determine which program entry points access adversary-
controlled objects. We implemented our design as a Linux
kernel mechanism capable of identifying entry points for
both binary and interpreted programs. Using this mecha-
nism, we computed the attack surfaces for all the programs
in the Ubuntu Linux 10.04 Desktop distribution automat-
ically. On examining located attack surfaces, we discov-
ered previously unknown vulnerabilities in an X Windows
startup script available since 2006 and the GNU Icecat web
browser. Our tools enable developers to find attack surfaces
for their programs quickly and to produce defenses prior to
the emergence of attacks, potentially moving us away from
the penetrate-and-patch rut.

1. INTRODUCTION
Protecting host system integrity in the face of determined

adversaries remains a major problem. Despite advances in
program development and access control, attackers continue
to compromise systems forcing security practitioners to reg-
ularly react to such breaches. With the emergence of more
sophisticated malware, such as Stuxnet, malware has begun
to target program entry points that are left undefended, thus
exacerbating the problem.
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While security practitioners may eventually learn which
entry points must be defended over a software’s lifetime,
new software and configuration options are frequently in-
troduced, opening additional vulnerabilities to adversaries.
The application developers’ problem is to identify the pro-
gram entry points accessible to adversaries and provide nec-
essary defenses at these entry points before the adversaries
use these to compromise the program. Unfortunately, this is
a race that developers often lose. While some program vul-
nerable entry points are well-known (mostly network), the
complexity of host systems makes it difficult to prevent lo-
cal exploits should attackers gain control of any unprivileged
processing. For example, the OpenSSH daemon was reengi-
neered to defend two entry points in the privileged part
through which several vulnerabilities were exploited [25], but
a third entry point also existed that was vulnerable to any
user processes [28]. The question we explore in this paper is
whether the program entry points accessible to adversaries
can be found proactively, so defenses at these entry points
can also be developed proactively.

Prior efforts to better understand how adversaries can ac-
cess programs focus either on system security policies or pro-
gram entry points, but each provide a limited view. With the
widespread introduction of mandatory access control (MAC)
enforcement in commercial operating systems (OSes) [36, 32,
35], it is possible to determine the subjects in the MAC pol-
icy that may be influenced by adversary-controlled data [34,
7, 14, 31]. Also, methods have been developed to compute
attack graphs [30, 23, 20], which generate a sequence of ad-
versary actions that may result in host compromise. How-
ever, these methods treat programs as black boxes, where
any program entry point may be able to access either adversary-
controlled data or benign data. As these accesses are not
connected to the program entry points that use them, it
is difficult to know where exactly in the program or even
the number of points in the program that access adversary-
controlled data.

From the program’s perspective, researchers have argued
for defenses at a program’s attack surface [13], which is de-
fined by the entry points of the program accessible to adver-
saries because they may access adversary-controlled data.
Unfortunately, programs often have a large number of li-
brary calls signifying potential entry points, and it is dif-
ficult to know which of these are accessible to adversaries
using the program alone. Some experiments have estimated
attack surfaces using the value of the resources behind entry
points [17, 18]. However, if the goal is simply to take control



of a process, any entry point may suffice. While researchers
have previously identified that both the program and the
system security policy may impact the attack surface def-
inition [13], methods to compute the accessibility of entry
points have not been developed.

In this paper, we compute the attack surface entry points
for programs relative to the system’s access control policy,
thus overcoming the above limitations of focusing only on ei-
ther one, and enabling accurate location these entry points.
First, we propose an algorithm that uses the system’s ac-
cess control policy to automatically distinguish adversary-
controlled data from trusted data based on the permissions
of each program’s adversaries. This constructs what we call
a program’s integrity wall1. We use the system’s MAC (as
opposed to DAC) policy for this purpose because it is im-
mutable, thus preventing the permissions of adversaries from
changing dynamically. To determine adversary access us-
ing MAC policies, past work leveraged program packages
to define what is trusted by programs [31, 27]. However,
the subjects associated with packages are not all necessarily
trusted equally. For example, the Apache package includes
user-defined CGI scripts, and clearly these cannot be trusted
by the Apache webserver. Instead, we propose a novel ap-
proach for computing per-program adversaries based on the
ability to modify the program’s executable content.

Second, we construct a runtime analysis to collect the pro-
gram entry points that access objects outside its integrity
wall. Fundamental to the runtime analysis are techniques to
find the program entry points (instructions in the program’s
binary), that receive adversary-controlled inputs. Our tech-
niques support both binary code and several interpreted
languages (e.g., Bash, PHP, Python) to enable system-wide
computation of program attack surfaces. Where available,
we use developer test suites for application programs; these
often test multiple program configurations as well, using
which we were able to associate certain entry points with
configuration options that enabled them.

We evaluate a prototype runtime analysis tool on Ubuntu
Linux LTS 10.04.2, using the distribution’s SELinux MAC
policy to build integrity walls and the application packages’
test suites to guide the runtime analysis to collect attack
surfaces. The tool found that this distribution’s trusted
computing base (TCB) processes have 2138 entry points,
but only 81 attack surface entry points that an adversary
could potentially exploit. While examining the system TCB
attack surface, we found a previously unknown vulnerabil-
ity in one entry point in a script that has been present in
Ubuntu for several years. Detailed analyses of Apache and
OpenSSH found an entry point in OpenSSH missed by a
previous manual analysis, and demonstrates the ability of
our tool to associate entry points with configuration options
and find subtle, easily overlooked entry points. Also, anal-
ysis of a recent program, the Icecat web browser, revealed
a previously unknown untrusted search path vulnerability,
demonstrating the value in applying this analysis proactively
on new programs.

1 Adversary-controlled data lies outside the program’s wall,
and trusted data inside the wall.
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Figure 1: An example of a webserver process showing four input
entry points A to D. Objects and processes are shown with their
MAC labels. The shaded entry points define the program’s actual
attack surface (i.e., access adversary-controlled data), although
only entry point D is protected by filtering. Entry point B is
only activated in certain configurations, but must nonetheless be
identified as part of the attack surface.

In summary, we make the following contributions:

• We propose an algorithm to construct an “integrity
wall” for applications based on MAC policy and a run-
time technique to precisely identify attack surface en-
try points in programs (including interpreted scripts)
using the constructed wall,

• We present results of the attack surface for the system
TCB for Ubuntu 10.04.2 and some of its applications,
which helped uncover two previously unknown bugs,
one present for several years in Ubuntu, showing the
value of locating attack surfaces before an adversary
does.

2. PROBLEM DEFINITION
The aim of this paper is to identify program entry points

that access adversary-controlled objects. If an adversary
can modify an object that is accessed by a program entry
point that expects only safe objects, the running program
can often easily be compromised.

Consider some of the entry points in a typical webserver
program shown in Figure 1. During development, the ap-
plication developers have realized that entry point D re-
ceives adversary input via the network, making D part of
the program’s attack surface. As a result, the developers
have added defenses to filter input at D. The program is
then deployed in a system under a particular access con-
trol policy and configuration that allows the accesses shown.
Entry point A reads a configuration file, and under any rea-
sonable MAC policy the adversary cannot access that file.
Thus, A is not part of the attack surface. Suppose the
administrator has enabled the UserDir configuration direc-
tive, allowing users to define their own HTML files (e.g.,
∼/public_html). Then, entry point B receives adversary-
controlled input (user-defined web pages), but the develop-
ers have overlooked this entry point because it is opened only
under certain configurations and, moreover, not an obvious
threat. Finally, entry point C reads in module library files
(e.g., ModCGI) to serve a request. While this entry point



is supposed to read in files labeled lib_t from /usr/lib,
it has an untrusted search path bug that first searches for
files in the current working directory. Hence, C exercises
permissions that it is not meant to, and reads the user’s
public_html directory for libraries. An adversary can eas-
ily take control of the web server and gain its privileges if she
plants a malicious module library in that directory. Thus,
the adversary has found two entry points B and C into the
program not anticipated by the developers.

In practice, we have seen much the same pattern. After
the Apache webserver was launched in 1998, vulnerabilities
were found at entry points that access log files, CGI script
output, user-defined HTML files, and user-defined config-
uration files over a period of six years2. We believe that
locating the attack surface proactively enables: (1) verifi-
cation of where input filtering is necessary to protect the
program, such as B and D, that have to handle adversary
input, and (2) identification of entry points that should not
be part of the attack surface, such as C, so the program
or policy can be fixed. Our evaluation (Section 5) found
two previously unknown vulnerabilities, one for each of the
above cases.

While classical security principles stress the importance
of recognizing where programs may receive adversary input
(e.g., Clark-Wilson [9] requires entry points to upgrade low-
integrity data), we lack systematic techniques to identify
these program attack surfaces entry points. Recent work
has focused on how programmers can express their attack
surfaces to systems for enforcement [29, 15, 37] or for further
testing [13, 17]. However, this work assumes developers al-
ready have a complete understanding of their program’s at-
tack surfaces, which experience and our results show to be
incorrect. Our results demonstrate that both mature and
new programs may have undefended attack surface entry
points, and many entry points are accessible to adversaries
in subtle ways.

Assumptions. Our work calculates attack surface entry
points in programs and not the attack surface of the OS ker-
nel itself. Thus, we assume the OS kernel to be free from
vulnerabilities that a local attacker can exploit. Further, we
assume that the reference monitor enforcing access control
in the OS enforces a MAC policy, and satisfies complete me-
diation and is tamperproof [2]. This implies that the only
way for local adversaries to attack programs is through rules
specified in the OS MAC policy.

3. DESIGN
Calculating the attack surface has two steps. First, for

a particular subject (e.g., httpd_t), we need to define its
adversaries (e.g., user_t), and locate OS objects under ad-
versarial control (e.g., httpd_user_content_t). We do this
using the system’s MAC policy. Next, we need to identify
the program entry points (e.g., entry points B, C, D) that
access these adversary-controlled objects. Statically analyz-
ing the program cannot tell which permissions are exercised
and which OS objects accessed at each entry point, and thus
we use a runtime analysis to locate such entry points. In this
section, we detail solutions to these two steps.

2CVEs 1999-1206, 2001-1556, 2002-1850, 2004-0940, 2004-
2343 respectively

3.1 Building Integrity Walls
A program may receive many inputs. However, not every

input into a program is necessarily under the control of ad-
versaries. A program depends on (i.e., trusts) some inputs
(e.g., etc_t and lib_t in Figure 1), whereas it needs to filter
(i.e., protect itself from) other inputs (e.g.,
httpd_user_content_t in Figure 1). Our insight is that the
system’s MAC policy enables differentiation between those
OS objects that a subject depends on and those OS objects
that it needs to filter. This is simply because a properly
designed MAC policy limits the modification of OS objects
that a particular subject s depends on only to subjects that
are trusted by s, and any other object is untrusted and needs
to be filtered on input. Thus, if we identify the set of sub-
jects trusted by s, we can then derive the trusted and un-
trusted objects for s from the MAC policy.

Integrity Wall Approach. The observations that we
use to calculate the set of trusted subjects are outlined be-
low. First, a process fundamentally depends on the integrity
of its executable program file. Thus, a subject in the MAC
policy has to trust other subjects that have the permission to
modify its executable program file3, called executable writ-
ers. While we could expand this definition to include all
code used by a process, such as libraries, we find that the
set of labels for approved libraries are ambiguous and that
these are covered by the other cases below.

Second, a process depends on the integrity of its under-
lying system. If the kernel can be compromised, then this
process can be trivially compromised. Thus, all subjects de-
pend on the subject labels with permission to modify any
kernel objects, called kernel subjects. Naturally, each subject
also depends on the executable writers of the kernel subjects
as well. This combination forms the system’s trusted com-
puting base (TCB).

Third, several applications consist of multiple distinct pro-
cesses, some of which are trusted and some not. For exam-
ple, htpasswd is a helper program for Apache that maintains
the password file .htpasswd. Intuitively, Apache depends on
this program to maintain the password file properly. On the
other hand, Apache should filter inputs from user-defined
CGI scripts. We state that a subject label s depends upon
a helper subject, if: (1) the two subject labels are part of
the same application (e.g., package) and (2) the helper sub-
ject’s executable writers are in the application or trusted by
s. Identifying that two subject labels are part of the same
application is often easy because MAC policies are now writ-
ten per application (e.g., there is an SELinux policy module
for Apache).

Integrity Wall Algorithm. The problem is thus to
compute for each subject a partition of the set of MAC pol-
icy labels P based on whether the subject depends on the
label or not, based on the three criteria above, forming that
subject’s integrity wall. An integrity wall for a subject s is
a partition of the set of labels4 in the system policy P into
sets Is and Os, such that s depends on labels in Is (”inside

3Typically, MAC policies are designed by assigning permis-
sions to each executable independently, which means there
is often a one-to-one mapping between subject labels and
executable files.
4The set of object labels includes the set of subjects labels
in the policy, but not vice versa. Also, we use the terms
subject and object for subject label and object label from
this point forward when unambiguous.



the wall”), and filters inputs from labels in Os (”outside the
wall”).

The integrity wall derivation computes Is = P −Os from
MAC policy containing relations x Write y and x Writex
y, which mean subjects of label x can write objects of label
y and subjects of label x can write executable file objects of
subject y, respectively.

1. The kernel subjects K ⊆ P of a system are:
K = {s1 | ∃o ∈ Kernel(P ), where (s1, o) ∈ Write}

2. The trusted computing base T ⊆ P of a system is:
T 0 = K;
T i = T i−1 ∪ {s2 | ∃s1 ∈ T i−1, (s2, s1) ∈ Writex};
T =

S
i∈N T i

3. The executable writers Es ⊆ P for a subject s are:
E0

s = s;
Ei

s = Ei−1
s ∪ {s2 | ∃s1 ∈ Ei−1

s , (s2, s1) ∈ Writex};
Es =

S
i∈N Ei

s

4. The helper subjects Hs ⊆ App(s) for a subject s are:
Hs = {s1 | (s1 ∈ (App(s)− {s})) ∧ (Es1 ⊆ (App(s) ∪
Es))}

5. The trusted subjects Ts ⊆ P for a subject s are:
Ts = T ∪ Es ∪Hs

6. The trusted objects Is ⊆ P for a subject s are:
Is = Ts ∪ {o |6 ∃s1 ∈ (P − Ts), (s1, o) ∈ Write}

First, we compute the kernel subjects (i.e., subjects with
Write access to Kernel(P ) objects) and TCB for the sys-
tem at large. The TCB is derived from a transitive closure
of the writers of the kernel subjects’ executables (Writex).
Then, for each subject we compute its executable writers
(again, using transitive closure) and its helper subjects.
Helper subjects must be part of the same application (App(s))
as the target subject s and can only be modified by a subject
outside the application that is trusted by s. Thus, htpasswd
is an Apache helper, but user scripts are not, as their exe-
cutable is written to by an untrusted subject (the user). Fi-
nally, we collect the trusted objects for the subject: the set
of objects that are only modified by the trusted subjects. A
problem is that some objects are written only by trusted sub-
jects, but are known to contain adversary-controlled data,
such as log files. We assume these objects to be untrusted.
More such cases are discussed in the evaluation.

This method computes the object labels inside the in-
tegrity wall for a subject label, and all other objects labels
are outside the integrity wall for that subject. Access to
objects outside the wall will be the focus in building each
program’s attack surface.

3.2 Identifying Attack Surfaces
Using an integrity wall for a subject, we can find the at-

tack surfaces of all programs that run under that subject.
As noted, it is impractical to identify these entry points stat-
ically, because any system call is authorized to access any
object to which the program’s subject is authorized. There-
fore, we propose a runtime analysis to locate entry points.
Runtime analysis provides a lower-bound for the number of
entry points in an attack surface, but nonetheless, we have
found many non-trivial attack surfaces with recent vulnera-
bilities and we identified new vulnerabilites (Section 5).

The most important design decision is to define what an
entry point is. To find the program entry points, we obtain

the process’s execution stack at the time of the system call.
Consider a program performing a system call that receives
input, through a stack of function calls F1, F2, . . . , Fn, where
Fi calls Fi+1. The entry point into the program occurs at
the greatest index i where Fi is not trusted to filter all input.
That is, we may trust libc to protect itself from untrusted
input, making the caller of libc the entry point. This is
often, but not always, the program executable instruction
that invoked the library call.

Developing a runtime analysis for identifying program at-
tack surfaces must meet the following requirements.

1. All security-sensitive operations from all processes must
be mediated,

2. The subject and object labels of each operation are
available, and

3. The context of the process execution (e.g., the instruc-
tion pointer and process stack) is available.

First, both user-level and kernel-level mechanisms have
been designed to mediate system calls, but the use of kernel-
level mediation is preferred in this case because: (1) multiple
security-sensitive operations and objects may be accessed in
one system call, and it requires significant parsing effort in
user-space to find them all accurately and (2) all processes
can be mediated in a single location for low overhead. In
several modern operating systems, reference monitors have
been implemented to mediate all security-sensitive opera-
tions [36, 35, 32], which we extend to detect accesses of
objects outside the integrity wall.

Second, we need to know the subject and object labels of
the operation to determine if this operation is outside the
integrity wall for that subject. The label information is ob-
tained from the reference monitor module enforcing system
security (e.g., SELinux [22] and AppArmor [21] for Linux).
We use this information to determine whether the subject
is accessing an object outside its wall based on the trusted
objects Is or its set complement Os.

Third, when an untrusted object is accessed, we find the
process’ user stack at the time of the call to find the entry
point. The main challenge is to search up the stack to find
the first stack frame that is not trusted to filter all inputs.
Each frame must be mapped to its code file to determine
whether it is trusted for all inputs. We use the virtual mem-
ory mappings to determine the code file, and we maintain a
table of those that are fully trusted. The specific mechanism
is described in the implementation.

Finally, we log entry points to user-space, so they can
be collected and analyzed. A log entry record consists of
the subject and object labels of the operation and the entry
point in the process’ user stack at the time of the operation.

4. IMPLEMENTATION
In this section, we describe how we implemented our de-

sign on Ubuntu 10.04.2 LTS Desktop Edition running a
Linux 2.6.35 kernel, with SELinux as the MAC enforcement
mechanism. We first describe our implementation to con-
struct the integrity wall for subjects, and then our modifica-
tion of the Linux kernel to log the entry points at runtime.
We also explain how we extended our system to deal with
interpreters. Our modifications added 1189 lines of code to



the Linux 2.6.35 kernel: 588 lines of code for interpreter pro-
cessing and the rest to fetch the stack backtrace, detect if the
operation is untrusted, and log fresh entries to userspace.

4.1 Integrity Wall Construction
We implement the design described in Section 3.1. We

implement the algorithms for each step in XSB/Prolog. In
total, the algorithms required 101 Prolog statements, 77 of
these were for parsing the SELinux policy, and the rest for
the wall generation. The main input is the system’s SELinux
MAC policy, which consists of a set of policy modules for
individual Linux applications deployed on the system5. We
describe implementation of the algorithms in terms of TCB
computation and the subject label’s integrity wall computa-
tion.

To construct the TCB of the system, we manually identify
a set of 13 kernel objects (Kernel(P )), write access to which
could directly compromise the kernel (e.g., /dev/kmem). Us-
ing Steps 1 and 2 of Section 3.1, the SELinux policy and the
kernel objects are used to identify the set of subjects that
can write to these kernel objects and to perform a transitive
closure of the writers of the binaries of the kernel subjects.
The SELinux policy identifies all write operations (Write)
and the objects that may be executables for a subject for
computing Writex. SELinux defines the object types6 for
initiating a subject using type_transition rules. The ob-
ject type in such rules corresponds to the label of the corre-
sponding executable file.

Using the SELinux MAC policy, we compute the integrity
wall for SELinux subject types in the Ubuntu distribution,
using Steps 3-6 in Section 3.1. To identify helper subjects,
we need to identify the subjects that are part of the same
application (App(s)). SELinux offers policy modules for ap-
plications, and we consider all subjects defined in an appli-
cation policy module as being part of the same application.
All TCB subjects use the same integrity wall.

As a special case, we force all log files to be outside the in-
tegrity wall of all subjects. Log file types are easily identified
in the SELinux policy (e.g., var_log_t).

4.2 Identifying Attack Surfaces
Once we have the integrity wall, we use it to locate op-

erations crossing the wall using runtime analysis. Figure 2
details our implementation in Linux, which leverages the
Linux Security Modules (LSM) framework [36]. We use the
SELinux LSM running in the Linux kernel to find untrusted
operations. This satisfies the three requirements for identify-
ing untrusted operations (Section 3.2). First, it mediates all
security-sensitive operations using the LSM interface. Sec-
ond, we instrument the SELinux access decision function,
avc_has_perm, which authorizes a subject type to perform
an operation on an object of a particular object type. Fi-
nally, the kernel always has details about the currently exe-
cuting process.

Our implementation enables: (1) uploading of integrity
walls; (2) identifying operations outside the wall for a pro-
cess; (3) finding the process entry point; and (4) logging the
operation. We examine implementation of these below.

To upload the integrity walls into the kernel, we export

5Many, but not all Linux applications have SELinux mod-
ules. Those programs without their own modules run under
a generic label, such as user_t for generic user programs.
6In SELinux, labels are called types.
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Figure 2: When the program makes a syscall, the SELinux func-
tion avc_has_perm is hooked through LSM hooks. If the calling
function reads an object with a label outside the wall for that
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program is generated to a relayfs file. A userspace logging dae-
mon collects this data into a log file, and a summarizer analyzes
this file to output the attack surface. The integrity walls for each
subject label are pushed into the kernel via a debugfs file.

a debugfs file to communicate the integrity wall for each
subject type to the kernel.

To identify operations accessing objects outside a sub-
ject’s wall, we look for operations that input data (i.e., read-
like operations). We use the permission map from Apol [33],
which identifies whether an operation is read-like, write-like,
or both. Interesting to note is that the permission map clas-
sifies operations from most covert (least actual input, such
as file locking) to most overt (most actual input, such as
file reading). We ignore covert operations, excepting for
directory searches. We find these valuable because they in-
dicate the presence of an attack surface if the directory is
untrusted, even if the file itself is not present. For example,
when a program searches for libraries in the current work-
ing directory (untrusted search path), the library file itself
is not present in benign conditions, but the search indicates
an attack surface.

Once we identify an operation that reads from outside
the wall, we find the entry point into the process. We first
obtain the user stack trace of the process, and then identify
the exact entry point. The user stack trace is available by
a simple unrolling of the linked list of base pointers on the
userspace stack. Such functionality is already available using
the ftrace framework in the Linux kernel, which we use.

To find the entry point, we search for the stack frame
that belongs to a code object that cannot protect itself from
all input. In Linux, the vma_struct is associated with the
name of its code object file (current->comm). Thus, for an
instruction pointer, we retrieve its code object file through
the vma_struct to identify entry points. Due to address-
space randomization, the exact IP may vary across different
runs of the same process. Thus, we use the offset from the
base of the binary, which is a constant. Then, this informa-



PROCESS: httpd CONTEXT: system_u:system_r:httpd_t
Number of entry points: 30
1:
(

0x2EC4A, /home/user/httpd-2.2.14/server/core_filters.c:383,
15, FILE__READ, system_u:object_r:httpd_user_content_t

)
--------------------------
2:
(

0x6758A, /home/user/httpd-2.2.14/server/listen.c:140,
38, TCP_SOCKET__LISTEN, system_u:object_r:httpd_t

)

Figure 3: A log entry from recording of untrusted operations.
Two entry points for Apache, with its location information.

tion can be used offline to find the exact line of code in the
program if versions of the binaries are available with debug
information (many of these are readily available in Ubuntu
repositories).

To export the data to userspace, we use relayfs. A
userspace daemon reads the kernel output and dumps the
output to a file. The daemon registers itself with the kernel
so it itself will not be traced. For each untrusted operation,
we log the following: (1) process name; (2) process ID; (3)
the entry point IP into the process as an offset from the base
of the binary; (4) the SELinux context of the subject7; (5)
the SELinux context of the object; (6) operations requested;
and (7) filename, if object is a file.

Once the log is available in userspace, it is parsed to out-
put a list indexed by process name(Figure 3). For each pro-
cess, each entry point indexed by IP is listed, with the op-
eration(s), types of data read through that entry point, and
the number of times that entry point is invoked. If debug
information is available for the process, we also print the C
source line of code that the entry point is associated with.

4.3 Finding Attack Surfaces in Interpreted Code
For interpreted programs, a normal backtrace of the user

stack will supply an entry point into the interpreter, and not
the script that it is executing. Several shell scripts are run
during normal operation of the system, some of which have
fallen victim to adversaries, so we also have to accurately
identify the attack surfaces of interpreted programs.

We built a kernel-based mechanism for extracting entry
points from programs in a variety of interpreted languages
(PHP, Python, Bash). This mechanism takes advantage of
the common architecture of interpreters. First, these in-
terpreters execute their programs by running each language
instruction in a function that we call the fundamental loop
function. Each interpreter also maintains a global current
interpreter object that represents the state execution of the
program, much like a process control block describes pro-
cesses. Second, when an error occurs, the fundamental loop
functions each call print backtrace function, that extracts
the stack frames of the currently executing program from
the current interpreter object.

To collect entry points for interpreted code, we made inter-
preter state visible to our kernel mechanism. This involved
creating kernel modules that are aware of each interpreter:
(1) obtaining access to each’s current interpreter object from
their ELF binary symbol tables and (2) using each’s print
backtrace functions to find entry points. First, the ELF bi-

7An SELinux context includes a type and other information,
including a user identity and role. We are mainly interested
in the type.

nary loader already contains mechanisms for accessing the
symbol table during program loading that we used to gain
access to the desired references. Second, we integrate the
backtrace code from the interpreter into the kernel module
to find entry points. This task is complicated because we
need to use this code to access user addresses from kernel
space. To do this safely, we use macros to handle page faults
that may result from user space access (copy_from_user)
and remove code that causes side-effects (any writes to user
space). Ultimately, very little code needed to be transferred
from user space: Bash required 59 lines of code, most of it to
handle hash tables in which it stores its variables, whereas
PHP required just 11 lines of code. Ultimately, 588 lines of
code were added to the kernel for the three interpreters, but
391 lines are for defining data structure headers.

4.4 Enforcing Attack Surfaces
We note that the same infrastructure that logs attack sur-

face entry points can also enforce them. In other words,
any access crossing the integrity wall would be blocked un-
less made through one of the authorized entry points for
that program and between appropriate types. When any
previously unknown entry point crossing the integrity wall
is found, its details can be reported to the OS distributor
much like crash reports are sent currently, who can decide
if the entry point is valid. Note that our enforcing mode
can block entry points exercising improper permissions such
as untrusted search paths (even those having previously un-
known bugs), while access control cannot (as the process
might legitimately have those permissions at another entry
point). To make our tool performant for online logging and
enforcement, we made some enhancements. The integrity
walls for subjects are stored as a hash table so looking up
whether an object is inside or outside the wall is fast. Also,
we only log operations if they have not been logged already.

5. EVALUATION
In this section, we present the results of our analysis of

attack surfaces for the system TCB of an out-of-the-box
install of Ubuntu Desktop LTS 10.04.2, with the SELinux
policy from the repositories. Our aim in this evaluation is
to demonstrate the effectiveness of our approach in com-
puting the attack surfaces for all the system programs in
a widely-used Linux distribution in relation to its default
SELinux policy. In addition, we performed a detailed study
of application programs, including Apache httpd, sshd and
the Icecat browser, the GNU version of Firefox. While the
Apache and OpenSSH are mature programs, we show that
our approach can identify attack surface entry points that
are easily overlooked. Icecat is a relatively new program, so
its analysis demonstrates how our approach may aid in the
proactive defenses of immature programs.

We found the following results. For the system TCB, we
found that: (1) our analysis was able to obtain an attack sur-
face of 81 entry points, including in scripts and some subtle
entry points, 35 of which have had previous vulnerabilities,
and (2) the attack surface of these programs is a small per-
centage of their total number of entry points. Examining
the system TCB attack surface, we found a vulnerability in
one entry point in a script that has been present in Ubuntu
for several years. For Apache and sshd, we were able to
associate attack-surface entry points with the configuration
option that enabled them by correlation with the configura-



Types Inside Wall Types Outside Wall
Subjects Objects Subjects Objects

System TCB 111 679 153 142
Apache (httpd t) 118 700 146 121

Table 1: Wall statistics for the system TCB types and Apache.
Subject types correspond to processes, and object types corre-
spond to OS objects (e.g., files) and processes.

tion used by their test suites. In sshd, we found an entry
point in the privilege-separated part that was missed by ear-
lier manual identification [29]. In Icecat, we found an entry
point that was part of the attack surface due to a bug.

5.1 Policy Analysis
This section presents the results of the wall generation

algorithm described in Section 3.1, on Ubuntu 10.04.2’s
SELinux policy. This policy used 65 application policy mod-
ules, and had 1058 types (subject and object) in total.

System TCB. We first need to locate the TCB that is
common to all applications. We build the TCB as described
in Section 4.1. In total, we had 111 subject types in the
TCB.

Wall Generation Results. Table 1 shows the number
of subject types inside and outside the wall for the system
TCB subject types and the Apache subject types and the
resulting number of high and low integrity object types. We
note that only seven new subject types are added to the
integrity wall for Apache over the system TCB subject types,
which it must already trust. Interestingly, the number of
high integrity object types given this wall outnumbers low
integrity types by more than 4:1.

We confirmed that for the system TCB programs we ex-
amined, the integrity wall derived from the policy corre-
sponded to our intuitive notion of dependence and filtering,
(i.e.,) configuration files and library files were within the
wall, and user-controlled input outside; we present more de-
tails of the wall when we discuss individual applications.

Violating permissions. We found that of 115,611 rules
in our SELinux policy, 34.4% of these rules (39,848) crossed
across the system TCB integrity wall, allowing input from
object types outside the system TCB to subjects in the sys-
tem TCB. The attack surface will consist of entry points in
TCB programs that exercise a permission that crosses the
wall. These cannot be found from the MAC policy; we need
information from the program.

5.2 Runtime Analysis

5.2.1 System TCB
Evaluation of the system’s TCB demonstrates that: (1)

the number of attack surface entry points is a small per-
centage of the total number of entry points, (2) some attack
surface entry points are subtle, and (3) even for mature pro-
grams in the system TCB, it is beneficial to locate the attack
surface, as demonstrated by a bug we found in an entry point
in a mature script that sets up the X server. We gathered the
attack surface over several days on a system in normal use,
involving bootup, typical application usage, and shutdown.

We found that only 13.8% (295 of 2138) of the total entry
points are part of the attack surface (Table 2). For exam-
ple, we found many entry points accessing trusted objects

such as etc_t; these entry points would not be part of the
attack surface. Thus, simply listing all possible entry points
in TCB programs as part of the attack surface would be a
significant overapproximation, and not very useful for anal-
ysis. Of the 295 attack surface entry points across various
programs in the TCB, that received untrusted input, 81 are
overt operations (Section 4.2); 35 of these have had input fil-
tering problems, many recently discovered for the first time.
Five Bash scripts add a total of 8 entry points to the attack
surface (Table 3). In addition, we found a previously un-
known vulnerability at an entry point in a script that sets
up the X server that has been around for several years, which
we discuss below. This leads us to believe that identification
and examination of such entry points prior to deployment is
key to preventing exploits.

Runtime analysis in inherently incomplete. To examine
completeness, we ran our kernel module in an enforcing
mode (Section 4.4), where any access crossing the system
TCB integrity wall was blocked unless made through one of
the entry points in Table 2 and between appropriate types.
We did not note any new accesses, and since we have a
conservative adversary model (including unprivileged users),
we believe our set of entry points to be complete for a de-
fault Ubuntu 10.04.2 Desktop distribution in relation to its
SELinux policy.

We located various subtle entry points that are part of
the attack surface. We illustrate this using the example
of logrotate. logrotate has an entry point that reads
from user_home_t, and the source code for this entry point
called a library function that gave little hint as to why this
was happening. The reading is actually done inside a li-
brary function in libpopt attempting to read its configura-
tion file. As another example, we found entry points call-
ing libc glob(). This function performs the system call
getdents returning untrusted directory filenames. A recent
untrusted filename attack on logrotate (CVE-2011-1155),
was found at this entry point. Neither of the above entry
points are as a result of simply calling read() in the source
code, and can be easily missed by manual code inspection.

We examined some of the entry points identified, to see
if we could locate any obvious problems. The script corre-
sponding to entry point 2 in Table 3 is responsible for setting
up the /tmp/.X11-unix directory, in which the X server cre-
ates a Unix-domain socket that clients can connect to. This
flow is into initrc_t from tmp_t (Table 2). However, we
found that it is vulnerable to a time-of-check-to-time-of-use
(TOCTTOU) vulnerability. Looking at the script makes it
fairly clear that the developer did not expect a threat at
this entry point. This script has existed as part of Ubuntu
distributions since at least 2006, and is an example of how
locating the attack surface made the problem obvious. We
believe that a more thorough testing of the entry points un-
covered may expose further vulnerabilities; however, that is
outside the scope of this paper.

5.2.2 Apache Webserver
We use our tool to evaluate a typical webserver deploy-

ment, the Apache webserver (version 2.2.14) with mod perl.
For the wall generation, of particular interest are object
types in the SELinux policy module for Apache that were
not included in the application TCB, four httpd_user types
and httpd_log_t. For the runtime analysis for Apache, we
ran the Apache::Test perl module, which contains test cases



TCB Type Total Viol. Program Overt Violating Object Type Bug ID /
Entry Entry Entry Accessed Notes

apmd t 3 3 acpid 1 Unix socket apmd t CVE-2009-0798
avahi t 38 14 avahi-daemon 3 * Unix socket system dbus daemon CVE-2007-3372

1 Netlink socket avahi t CVE-2006-5461
1 UDP socket read avahi t CVE-2006-6870

consolekit t 37 3 console-kit-daemon 1 file tty device t –
1 Unix socket system dbus daemon CVE-2010-4664

1 file consolekit log t –
cupsd t 56 10 cupsd 1 TCP socket cupsd t CVE-2000-0540

1 file print spool t –
devicekit disk t 72 6 udisks-daemon 1 * 4 unix socket system dbus daemon CVE-2010-0746

1 netlink socket devicekit power t –
devicekit power t 97 7 upowerd 1 * 2 unix socket devicekit power t –

1 netlink socket devicekit power t –
dhcpc t 15 2 dhclient3 1 raw socket read dhcpc t CVE-2009-0692

nm-dhcp-client.action 1 unix socket system dbus daemon –
getty t 18 3 getty 1 file read initrc var run t –
hald t 188 28 hald 1 unix socket system dbus daemon –

hald-probe-serial 1 file tty device t –
hald-addon-storage 1 unix socket system dbus daemon –
hald-addon-acpi 1 unix socket apmd t Ubuntu Bug 230110

initrc t 479 23 sh 1 file read initrc var run t –
sh 2 * dir read tmp t Prev. unknown

telinit 1 * 2 file read initrc var run t –
init t 319 27 plymouth 1 file read devpts t –

ureadahead 1 file read user home t –
init 1 unix socket system dbus daemon –
sh 2 file read tmp t –

loadkeys 1 file read devpts t –
local login t 152 10 login 1 * 2 file read initrc var run t CVE-2008-5394

1 unix socket system dbus daemon –
1 file read user home t (motd) CVE-2010-0832

1 dir search user home dir t (hushlogin)
1 dir search user home dir t CVE-2010-4708

python 1 dir search user home dir t Python search path
logrotate t 41 6 logrotate 1 file read generic - log files –

1 dir search user home dir t (libpopt)
1 dir read var log t CVE-2011-1155

NetworkManager t 76 45 NetworkManager 1 netlink socket NetworkManager t –
1 unix socket system dbus daemon CVE-2009-0578

sh 2 * dir search tmp t –
ntpd t 24 4 ntpdate 1 udp socket ntpd t CVE-2001-0414
restorecond t 17 9 restorecond 1 * 3 file read generic - all types –

1 dir read user home dir t –
rtkit daemon t 20 9 rtkit-daemon 1 unix socket system dbus daemon –
sshd t 78 11 (Discussed (5 in privileged – 2 vulns

in Table 5) part) – –
syslogd t 29 1 rsyslogd 1 udp socket syslogd t CVE-2008-5617
system dbusd t 63 15 dbus-daemon 1 * 3 unix socket system dbus daemon CVE-2008-3834
udev t 217 25 udevd 1 * 2 netlink socket read udevd t CVE-2009-1185

sh 1 file read tty device t –
xdm t 56 16 gdm-binary 1 file read user home t CVE-2006-1057

gdm-simple-slave 1 unix socket system dbus daemon –
1 file read initrc var run t –
1 file read xdm tmp t –

gdm-session-worker 1 file read xauth home t CVE-2006-5214
1 dir search user home dir t CVE-2010-4708

xserver t 43 18 Xorg 1 * 3 file read xdm tmp t –
1 unix socket xserver t CVE-2007-1003

1 netlink socket xserver t –
1 shared memory unconfined t CVE-2008-1379

Total 2138 295 81 35

Table 2: Attack surface for the system TCB. The first column is the TCB type we consider, the second the total number of entry points
for all programs running under that type, and the third the number of violating entry points that cross the integrity wall. Next, we
list the specific binary with its overt violating entry points (Section 4.2) and the object type accessed that causes the entry point to
be violating. We also identify vulnerabilities caused due to insufficient filtering at the overt entry points (we could not find any for the
covert entry points). When multiple vulnerabilities are available for an entry point, the chronologically earliest is listed. Highlighted
rows are discussed further in text.



ID Source Script:Line Number Source Type Target Type

1 /lib/udev/console-setup-tty:76 udev t tty device t
2 /etc/rcS.d/S70x11-common:33,47 initrc t tmp t
3 /usr/lib/pm-utils/functions:30 initrc t initrc var run t

4 /etc/NetM/dispatcher.d/01ifupdown:27,29 NetworkManager t tmp t
5 /etc/init/mounted-tmp.conf:44,45 init t tmp t

Table 3: Entry points in Bash scripts.

ID Source File:Line Number Object Type Accessed Description Config Option

1 server/util.c:879 httpd user htaccess t read user .htaccess file AccessFileName
2 server/core filters.c:155 httpd t read tcp socket -
3 server/core filters.c:383 httpd user content t read user HTML file UserDir
4 server/connection.c:153 httpd t read remaining tcp data -
5 os/unix/unixd.c:410 httpd user script exec t execute CGI user script Script

Table 4: Apache entry points receiving low-integrity data

generated by the Apache developers. We found 30 entry
points for the Apache webserver, of which 5 received un-
trusted operations. Details are in Table 4.

We located several entry points accessible to adversaries.
Network attacks being well understood, we list implications
of the entry points accessing local untrusted data (1, 3 and
5 in Table 4). httpd_user_htaccess_t denotes the user-
defined configuration file .htaccess. Previous problems with
this entry point are Bugtraq IDs 8911, 11182, 15177.
httpd_user_content_t are user-defined web pages that
Apache serves. A vulnerability due to incorrect parsing of
the HTML files is BID 11471. Entry point 5 is where Apache
forks a child to execute a user-defined CGI script - the exec

operation reads an untrusted executable is untrusted (BID
8275), and could easily be missed by manual analysis.

As mentioned before, our tool was able to associate some
entry points with the configuration option that controlled
the entry point; different application configurations may ex-
pose different attack surfaces. This knowledge is helpful to
administrators, who can view the effect of their configura-
tion on the attack surface.

5.2.3 Secure Shell Daemon
We also performed a study on the SSH daemon, sshd (v.

5.1p1). In total, there were 78 entry points, of which 27 re-
quired filtering. 14 of these which correspond to overt input
are listed in Table 5. Entry points 12, 13 and 14 were opened
by non-default configuration options. Of key interest, is that
OpenSSH has been re-engineered to separate the privileged
operations from those that are unprivileged to prevent vul-
nerabilities [25]. This work focuses on two attack surface
entry points that communicated data from the unprivileged
SSH daemon process to the privileged, master SSH daemon
process. Using our tool, we found another entry point (7)
that reads the authorized_keys file in the .ssh/ directory
of users. Since this is modifiable by users, it could be of low
integrity [28], and our wall indicates this. This entry point
was also missed in a manual analysis to configure SELinux
policies to enforce privilege separation [29], showing the im-
portance of an automated technique like ours. Entry points
13, 14 may present similar issues for those configurations.

5.2.4 Icecat
We also performed a study on the GNU version of Fire-

fox, Icecat. The objective of this study was to look at a
relatively less-known project, to see if we could find any
problems using our tool. We envision this to be a typical
use-case of our tool. In total, we found 18 entry points for
Icecat, of which 4 accessed untrusted data. On closer exam-
ination of the attack surface, we found an entry point that
searched the directory user_home_dir_t, whose code was
in the dynamic loader/linker library ld.so. We suspected
an untrusted library search path, and confirmed that this
indeed was the case. This could easily be exploited by an
adversary-controlled library that the user downloads to her
home directory. The developers accepted our patch [5].

5.3 Performance
Micro- and macro-benchmarks showed acceptable perfor-

mance overheads for online logging and enforcement. For
example, stat system call takes an unmodified kernel took
8.5µs on average. Overhead for checking if the subject was
trusted and the object was untrusted took an additional
0.2µs. If the access was untrusted, the logging mode added
an overhead of 1µs, whereas the enforcement mode added
an overhead of 0.1µs. The sshd test suite ran in 318.29s on
the unmodified kernel, whereas configured with an integrity
wall for sshd with both enforcement and logging enabled
took 318.81s.

6. RELATED WORK
Taint tracking has been used to track the flow of untrusted

input to a program, and find places where it may affect the
integrity of the program. Tracking can be done for whole
systems [4, 8] or for specific processes [19, 26]. However,
these systems expect manual specifications of taint entry
points. For example, [19] considers data “originating from
or arithmetically derived from untrusted sources such as the
network as tainted”. However, it is not clear that all entry
points that receive low integrity data are locatable manually.
Our tool provides this origin input to taint tracking systems.

Manadhata et al. [17] calculate an attack surface metric
for programs based on methods, channels and data. They
prepare a list of input and output library calls from libc

that are used to determine the methods. Although this is



ID Source File:Line Number Object Type Accessed Description Config Option

1* monitor wrap.c: 123 sshd t Master-slave Unix socket read UsePrivilegeSeparation
2 msg.c:72 sshd t Unix socket read -
3 msg.c:84 sshd t Unix socket read -
4 sshd.c:442 sshd t TCP socket read -
5 dispatch.c:92 sshd t TCP socket read -
6 packet.c:1005 sshd t TCP socket read -
7* misc.c:627 user home ssh t ∼/.ssh/.authorized keys file read AuthorizedKeysFile
8* channels.c:1496 ptmx t pseudo-terminal read -
10 serverloop.c:380 sshd t fifo file read -
11 loginrec.c:1423 initrc var run t read utmp -
12 session.c:1001 user home ssh t ∼/.ssh/.environment file read PermitUserEnvironment
13* hostfile.c:222 user home ssh t ∼/.ssh/known hosts file read IgnoreUserKnownHosts
14* auth-rhosts.c:82 user home ssh t ∼/.ssh/.rhosts file read IgnoreRhosts

Table 5: sshd entry points that may receive low-integrity data. Entry points marked with * are in the master part of the privilege-
separated daemon.

useful for a first approximation, it does not distinguish be-
tween entry points receiving high-integrity input and those
receiving low-integrity input. In our analysis, only a small
percentage (13.8%) of the entry points were found to re-
ceive data of low-integrity. Hence, a simple listing of all
such library methods may not give a true picture of work
required to secure an application. Further, a library may be
called through several layers of libraries, and the context of a
lower-layer library call may not be relevant through several
layers. We identify the point in the application that receives
low-integrity input, which is more helpful to application de-
velopers than a low-level library function that may be called
in different contexts.

Several practical integrity models [16, 31, 29, 15] are re-
lated to our work. UMIP [16] and PPI [31] identify trusted
subjects that need to maintain their integrity on receiving
low-integrity input. Though their goals differ from ours,
they also build integrity walls. UMIP builds integrity walls
system-wide based on the DAC policy, whereas PPI uses
package dependencies for the same. However, they iden-
tify trusted processes as a whole and do not identify entry
points within a process, which we have seen to be necessary.
Further, they only consider system-wide integrity walls, and
not per-application. Flume [15] allows entry point-level con-
trol, but leaves the specification of the policy up to the user,
who has to decide which entry points to allow to receive un-
trusted input. Such policy could benefit from knowledge of
the attack surface. Shankar et. al [29] identify that we need
to verify input filtering for entry points that receive low-
integrity input. However, they identify entry points manu-
ally, and missed an entry point in sshd that we identified
using our automated approach.

Bouncer is a system that uses knowledge of vulnerabili-
ties to generate filters automatically [10]. It symbolically
executes the vulnerable program to build a filter that covers
the particular attack and generalizes the filter to cover other
unauthorized inputs without preventing legitimate function.
EXE automatically generates inputs that will crash a pro-
gram [6]. Both of these systems would benefit from knowl-
edge of the attack surface of a program. In the latter case,
this will focus use on legitimate entry points for consider-
ation. The inputs that cause failure may then be used to
generate filters via Bouncer.

We could also have leveraged system call interposition [24,
12, 1, 3, 11] to monitor objects accessed by a program, in-

stead of doing it in the kernel. However, as noted in Sec-
tion 3.2, we have to maintain a list of system calls that causes
inputs, know the sets of objects accessed by each of these
calls, and fetch the security contexts of these objects from
the kernel – all duplicating information readily available in
the kernel. Also, system call interposition has high overhead
and is challenging to do system-wide.

7. CONCLUSION
In this paper, we introduced an approach to identify at-

tack surfaces in programs with respect to an integrity wall
constructed from the system’s security policy. We imple-
mented a system in the Linux kernel that enabled precise
identification of attack surface entry points, even in inter-
preter scripts. Our results indicate that accurate location
of attack surfaces requires considering a program in relation
to the system’s access control policy. For the system TCB
in an Ubuntu 10.04.2 Desktop system, we obtained an at-
tack surface of 81 entry points, some subtle; 35 of these have
had past vulnerabilities, many recently. Our attack surface
indicated an entry point in sshd that was missed by ear-
lier manual analysis, and an entry point in the GNU Icecat
browser that was due to an untrusted search path bug. Fur-
ther, our attack surface helped us find a bug in an entry
point of the system TCB of Ubuntu that has been around
for several years. We envision that our tool will be used on
new programs to identify attack surfaces before an adver-
sary does and prepare defenses, moving us away from the
current penetrate-and-patch paradigm.
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