
A Rose by Any Other Name or an Insane Root?∗

Adventures in Name Resolution

Hayawardh Vijayakumar, Joshua Schiffman, and Trent Jaeger
Systems and Internet Infrastructure Security Lab

Penn State University
Email: {hvijay,jschiffm,tjaeger}@cse.psu.edu

Abstract

Namespaces are fundamental to computing systems. Each
namespace maps the names that clients use to retrieve re-
sources to the actual resources themselves. However, the
indirection that namespaces provide introduces avenues of
attack through the name resolution process. Adversaries
can trick programs into accessing unintended resources by
changing the binding between names and resources and
by using names whose target resources are ambiguous. In
this paper, we explore whether a unified system approach
may be found to prevent many name resolution attacks.
For this, we examine attacks on various namespaces and
use these to derive invariants to defend against these at-
tacks. Four prior techniques are identified that enforce
aspects of name resolution, so we explore how these tech-
niques address the proposed invariants. We find that each
of these techniques are incomplete in themselves, but a
combination could provide effective enforcement of the
invariants. We implement a prototype system that can im-
plement these techniques for the Linux filesystem names-
pace, and show that invariant rules specific to each, indi-
vidual program system call can be enforced with a small
overhead (less than 3%), indicating that fine-grained name
resolution enforcement may be practical.

1 Introduction

Namespaces are fundamental to computing systems.
Namespaces map the names that clients use for retriev-
ing and sharing resources to the actual resources. For ex-
ample, a file’s pathname is linked to a unique file inode
that represents the physical resources that file pathname
addresses. The process of translating the name to the re-
source in a namespace is called name resolution. Filesys-
tem, process, and network namespaces are well-known
examples, but component-specific namespaces like sys-
tem services (e.g., D-Bus methods), middleware (An-

∗Apologies to William Shakespeare and his fans.

droid), and web infrastructure (e.g., URLs) exist. Names-
pace resolution is a key issue in any distributed system de-
sign [6, 20], so we expect new namespaces will continue
to emerge as new software architectures are developed.

However, the indirection that namespaces provide in-
troduces avenues of attack through the name resolution
process. By altering the bindings between names and
the intended resources, adversaries can trick victim pro-
cesses into accessing untrustworthy resources. For ex-
ample, time-of-check-to-time-of-use attacks [2] (TOCT-
TOU) enable an adversary to change the file inode bound
to a pathname after the victim has checked to determine
the user’s access rights to that file. Other attacks rely on
the ambiguity surrounding which actual resource may be
associated with a name. A confused deputy problem [15]
may be created when an adversary provides a file path to
a privileged server that fails to recognize the path is a link
to a privileged inode, like a password file.

The typical approach to defend against name resolu-
tion attacks is to provide programmers with API changes
that enable them to detect and prevent such attacks them-
selves. For example, system calls have been extended
with flags that prevent a process from creating a file if one
already exists with that name (prevents squatting) or fol-
lowing a symbolic link (limit the accessible files). How-
ever, programmers continue to make errors because some
programs require such risky functions and programmers
simply fail to add the necessary checks. Also, researchers
have found that it is difficult to prevent such attacks in
general. Hu and Dean proposed a system solution to pre-
vent the access TOCTTOU vulnerability [11], later ex-
tended by Tsafir et al. [24], but others found both solu-
tions flawed [4], leading to the requirement that any com-
prehensive defense against race conditions requires an ac-
curate model of the programs that it protects. However,
this limitation should not prevent us from exploring de-
fenses, but rather we must build defenses understanding
these limitations.

In this paper, we explore options for a unified system
solution to prevent name resolution attacks. We cite the



experience with preventing memory errors as a motiva-
tion. The prevailing thought ten years ago was that pro-
grammers could, with the right training and tools, pre-
vent such errors, but this proved to be ineffective. In-
stead, incomplete defenses were proposed that do not re-
quire programmer input [1], and those with sufficiently
low overhead, such as canaries [10] and non-executable
memory [13], have now been adopted to prevent many
types of buffer overflow vulnerabilities.

The question we explore is whether a system approach
based on a combination of low-cost, incomplete defenses
that do not require programmer input may be found to pre-
vent many name resolution attacks. To find the answer to
this question, we identify the requirements for name res-
olution attacks and explore the effectiveness of candidate
defenses. A key issue is that name resolution attacks in-
volve two components, one that manages the namespace
and one that uses the namespace, and it is necessary for
the two to collaborate to prevent such attacks.

The paper continues with Section 2 that outlines the se-
curity model for name resolution and describe a variety of
attacks against namespaces. Section 3 develops name res-
olution invariants and evaluates the effectiveness of pre-
vious defenses using these invariants. In Section 4, we
examine how such mechanisms may be composed into a
coherent defense mechanism, using the filesystem names-
pace as the example. Finally, Section 5 explores how this
approach may be generalized to apply to any name reso-
lution mechanism and the challenges in implementing the
mechanism for particular namespaces.

2 Background
In this section, we describe attacks on name resolution
and define our security model.

2.1 Name Resolution

Name resolution is performed by a name server. When a
client provides a name, the server returns a resource refer-
ence. Each resolution is specific to a namespace, which
may map names to resources one-to-one, many-to-one
(e.g., many file pathnames may refer to one file inode), or
one-to-many (e.g., one name may refer to many possible
resources of which one is selected usually). At present, we
have not seen a many-to-many namespace. Name servers
may also enforce access control over the client’s ability
to use the associated resource. Once the resource refer-
ence is returned the client may use that resource within
the scope of her access rights.

We briefly examine two different name resolutions to
demonstrate why security problems may occur in name
resolution. First, virtual address resolution converts a

virtual address (the name) to a physical address (the re-
source). In modern systems, page table architectures may
contain one or more levels of mappings, where the result
of a mapping is the availability of the associated physical
frame backing the physical address. Virtual address res-
olution does not suffer from vulnerabilities because it is
quite restrictive: the mapping is one-to-one, defined by a
trusted server, and only modifiable by the client itself or
the server.

Second, the file pathname resolution process is similar,
but presents some additional flexibility to allow multiple
parties to manage the namespace. An important issue is
that multiple clients may bind names to file inodes, where
some (the file owners) can choose the files’ access rights
as well. Clients can create resources in locations dic-
tated by their file system permissions, but some locations
are shared (e.g., /tmp). Also, clients may create multiple
names for the same file inode, using links. Naming a file
inode does not require access to the file, as a symbolic link
is simply a path. As a result, file resolution may depend
on bindings between file names and inodes defined by un-
trusted clients. Also, the mapping between file names and
inodes may be changed by clients at any time. This flex-
ibility enables applications to create, manage, and share
their files easily, but also provides opportunities for ad-
versaries.

2.2 Security Model

We now identify our security model for reasoning about
vulnerabilities described in this section. First, name
servers are trusted by all processes to perform name reso-
lution using their built-in algorithm, based on the current
state of the namespace. The adversary does not control
the name server. Second, victim processes are the targets
of potential attack. Any process could be a potential vic-
tim, but they are assumed not to be under the control of
an adversary. In particular, we assume that they gener-
ate name resolution requests that are consistent with the
programmers’ model of the expected namespace. Finally,
adversaries may control any external host or unprivileged
processes on the victim’s host. We assume that adver-
saries may use any permission available to the hosts and
processes they control.

Threats emerge from the distinction between the pro-
grammers’ model of the expected name resolution and the
actual resolution. Vulnerabilities are then possible if the
adversary is able to redirect the victim to a resource with
different security semantics than the expected resource.
For example, if an adversary can get a victim to obtain
a reference to a file whose content is under the adver-
sary’s control (i.e., is low integrity) when a trusted file is
expected, then the victim can be compromised. Alterna-
tively, an adversary may also provide a name to a high-



integrity resource that the adversary cannot modify di-
rectly and trick the victim, who can modify this resource,
to perform modifications dictated by the adversary [15].

2.3 Example Attacks

There are a variety of name resolution attacks, and we ex-
amine some specific instances that explore various facets
of namespace problems. We use these attacks to identify
four categories of problems with namespaces.

Namespace Pre-binding Attack. The namespace pre-
binding attack allows adversary processes to create un-
trusted bindings that help them masquerade as another en-
tity.

Example 1 - System V shared memory. System V shared
memory uses a “key” namespace, as memory pages are
not addressible by the filesystem namespace. The key re-
solves to a shared memory offering, and both the offering
and the sharing processes need to know their unique key.
Since this key namespace is shared, the same key can be
offered by processes running under subjects with differ-
ent integrity. Thus, if an adversary process can associate a
shared memory region with a key before a trusted process
process can, it can masquerade as that trusted process. A
generalization of this problem is IPC squat [3].

Example 2 - XenStore. XenStore provides a store
of key-value pairs that contain information about run-
ning virtual machines under the Xen VMM. Parts of
this namespace contain critical information, and must be
writable only by the privileged domain, dom0. However,
there have been at least two cases where, due to improper
permissions on the namespace, VMs were able to write
arbitrary values onto critical keys, thus introducing low-
integrity bindings. dom0 accessed and used this informa-
tion without realizing it was a bad binding.

Example 3 - Linux filesystems. A common attack on
Linux filesystems is link following. In this attack, a victim
process uses some temporary files with predictable names.
It however, does not check that these temporary files are
already bound. Thus, an adversary process simply creates
a symbolic link with the predictable name to any critical
file (e.g., /etc/passwd). The victim program corrupts
the file, without realizing that it followed a bad binding.

Namespace Rebinding Attack. In this type of attack,
an adversary rebinds a trusted binding to an unintended
resource. The ability to rebind makes an adversary more
powerful than the ability to just bind.

Example 4 - Linux filesystems. A common attack on
Linux filesystems is TOCTTOU. Here, a victim process
checks to see if the resource it accesses is valid, and then
uses it. However, in the time between the check and use,
an adversary could update the mapping to make it point to
a file of her choice.

Example 5 - HTML DOM. There are a few DOM
name resolution functions in JavaScript. In particular, the
getElementById function should ”access the first el-
ement with the specified id” [25]. Although we do not
know of such exploits, an adversary who is able to inject
just plain HTML into a page (e.g., many forums allow
this), could re-bind the resolution of an already existing
HTML element to the adversary’s injected element by giv-
ing it the same ID, provided it occurs earlier on the page.
JavaScript and other code that depends on this element
would now resolve to the adversary-controlled element.

Namespace Multi-binding Attack. The previous names-
paces mentioned offer either one-to-one or many-to-one
mappings. However, some namespaces use one-to-many
bindings. The resolution algorithm then chooses one
among those bound to the name. An adversary can create
a binding and hope that the resolution algorithm chooses
it over other, legitimate choices.

Example 6 - Android IPC. Android enables processes
to communicate via the Binder IPC mechanism. We note
that Android IPC is vulnerable to IPC squat [3]. We fo-
cus on a different problem here. A process can request to
connect to a foreground Activity, or a background Service,
by sending an Intent message, that identifies the recipient
of the request. Intents can explicitly identify a recipient,
or implicitly, by allowing the OS to select among a pos-
sible set of processes that have registered to handle that
Intent. If an implicit Intent can be handled by multiple
foreground activities, the user is given a choice to select
one. However, if an implicit Intent can be handled by
multiple background services, any one is chosen at ran-
dom [8]! Thus, an untrusted activity or service registering
on an Intent allows unexpected resolutions.

Example 7 - D-Bus. Another example of a one-to-many
resolution algorithm is in D-Bus. D-Bus is used by pro-
cesses for IPC. Servers group multiple related methods
into an interface. If a client sends a method without spec-
ifying an interface, the bus daemon will try to locate any
interface with a matching method signature.

Improper Name Attack. The previous classes of at-
tacks are due to unexpected name resolution. However,
programs may supply an unintended name for resolution.
This situation occurs most commonly due to bugs in pro-
grams, where an adversary controls the supplied name in
ways she should not.

Example 8 - Directory Traversal. As an example, con-
sider directory traversal attacks in webservers. The ad-
versary supplies ../../etc/passwd, and instead of
fetching a HTML file, the webserver serves the password
file. In this case also, an unexpected resource is fetched,
though it is the requesting program that is at fault, and not
the name resolution. We contend that the namespace is the
proper place to defend against such attacks, and the reso-



A B C

R33 R80 R235

Namespace 

Namespace
Bindings

Names

Resources

D

R238

Figure 1: A namespace has names that are resolved to
resources through bindings.

lution algorithm can simply fail if it knows the resource is
not a proper one for a particular program context.

Finally, we note that traditional access control of pro-
cesses and resources (e.g., files) in operating systems can-
not completely solve the problem of unexpected resolu-
tion in the filesystem namespace, as a single program
might legitimately need access to adversary-controlled re-
sources through certain interfaces. However, some reso-
lutions are unacceptable in certain situations. We need to
protect against unacceptable resolutions (i.e., the names-
pace resolving to an adversary-controlled resource when a
high-integrity resource is expected, and vice-versa). Thus,
we need to consider a method that reasons about the con-
text in which requests are made to namespaces to restrict
resolutions properly.

3 Name Resolution Invariants

Based on the attacks above, we define name resolution in-
variants for specifying the requirements for secure name
resolution. Figure 1 shows a conceptual model for map-
ping names to resources, where each name may be bound
to one or more resources and a resource may have multiple
possible names. Using this model, we examine how four
different types of defenses may be used to prevent name
resolution attacks, finding that they each provide partial
solutions.

System Resource Restriction. The first defense restricts
the set of resources that may be retrieved from a name res-
olution operation. For example, a network firewall [7, 17]
restricts which IP addresses may be accessed by a partic-
ular system interface (e.g., a port), regardless of the result
from a DNS resolution. The aim is to block resolutions
that are known to be insecure, such as redirecting mail re-
quests to an untrusted server. Thus, even though the DNS
binding between a name and an IP address may be un-

trusted, the firewall protects the system from being redi-
rected. However, if an IP address may lead to a malicious
resource, the firewall may still allow it, should the sys-
tem’s function require such operations (e.g., web client
access). Also, firewalls require policy to be specified,
which is a manual process. We highlight firewalls rather
than access control mechanisms, in general, because fire-
walls can restrict access per system interface. Access con-
trol instead gives the process’ full rights to each program
system call. We discuss the importance of this in the next
section.

Capabilities. A second defense is to circumvent the need
for name resolution by providing access to the necessary
resources directly. This is the aim of pure capability sys-
tems [14, 23], which restrict all naming to be performed
using capabilities. That is, each process can only access a
resource for which it has a capability. Each process has a
capability to a memory region containing a set of capabil-
ities, and other capabilities may be obtained from other
processes indirectly. However, confinement is a prob-
lem for capability systems [16] because we may want to
prevent a process from being able to obtain a capability
for an unauthorized object, even though it can commu-
nicate with another process with that capability. While
EROS can prevent a process from obtaining capabilities
that would violate the *-property [23], it cannot confine
processes arbitrarily. SCAP [16] and ICAP [12] proposed
mechanisms to authorize capability use and propagation,
respectively, but writing such policies will often depend
on naming objects. The Capsicum system takes this ap-
proach to an extreme, obtaining capabilities when pro-
cesses start [26]. However, one still has to check name
resolution when those capabilities are collected. In gen-
eral, developers find namespaces convenient, so replacing
them entirely with pure capability systems seems quite
unlikely. Nonetheless, where names can be converted to
capabilities securely, the use of capabilities prevents am-
biguity due to name rebinding.

Namespace Management. A third defense restricts the
ability to modify namespace mappings used in resolution.
It has long been recommended that processes have a pri-
vate namespace [18, 20], and Linux has supported per-
process namespaces since version 2.4.19. A per-process
namespace enables a process to “unshare” resources by
creating their own namespace mappings for a resource.
This is employed by container-based virtualization ef-
forts, such as OpenVZ [19], which aim to provide dis-
joint namespaces for processes in their containers. Also,
D-Bus employs per-session namespaces, which are spe-
cific to each logged-in session. Per-process namespaces
are typically used for convenience (e.g., to run software
that depends on different versions of a file typically in the
same path), but there is also a potential for reducing name



resolution attacks. For example, a process may protect it-
self from compromise by only using namespace bindings
it or a trusted process defined. Unfortunately, this may not
always be practical because servers may need to retrieve
files defined by low-integrity subjects in their namespaces.

Chari et. al [5] aim to ensure that only high-integrity
bindings are resolved in the Linux filesystem shared
namespace, by enforcing that only high-integrity subjects
(root and the requesting user) have permission to mod-
ify any component of a pathname that is being resolved
(by checking directory permissions). For cases where this
does not hold, they use additional heuristics on the bind-
ings to determine whether the resource resolved is appro-
priate. By viewing the problem more broadly, we envi-
sion that we can control name resolution directly using
resource constraints (e.g., is the resource appropriate for
the request?) and using per-process namespaces to pre-
vent unexpected rebindings.

Program Resource Restrictions. Finally, a fourth de-
fense is based on knowledge of the program intent. Cai et
al. argue that any kernel (i.e., name server) race detector
must have side information about the program or it oth-
erwise is limited in its function [4] (i.e., either has false
positives or false negatives). As capability and names-
pace management solutions eliminate races by preventing
changes in bindings, they are not susceptible to these lim-
itations (although they have other limitations). However,
the firewall defense above and other custom race detectors
that would run in the name server [11, 24] suffer some
limitation. The challenge is how to get this side infor-
mation. Programmers may specify such information, but
they are typically loathe to annotate their programs and
often make errors. The alternative is to perform program
analyses to identify races and the scope of resources re-
quired for each system call. However, runtime analysis
may be incomplete and static analysis may be imprecise.

Based on this analysis of known defenses, we identify
four distinct ways to prevent name resolution attacks, but
each has limitations. Our goal is to define invariants for
name resolution, and then explore how we can combine
such techniques to greatly limit an adversary’s ability to
compromise victims, eliminating attacks entirely in some
cases.

We thus propose the following name resolution invari-
ants:

i-resource: Each name resolution R = (s, n, p) in
namespace s of name n by process context p must restrict
the resource output from a resolution of s to authorized
resources for p and n.

i-binding: Each name resolution R = (s, n, p) in
namespace s of name n by process context p must restrict
the namespace bindings used in resolutions of s to those

defined by authorized subjects for p and n.

We note that each name resolution should enforce its
requirements of the invariants i-binding and i-resource –
only one or both may apply. To see why this is the case,
consider the following two cases for Linux filesystems.
First, consider the directory traversal attack in Section 2.3.
In this case, even if the webserver follows only trusted
bindings, it will end up with a resource that is outside
the expected scope. Thus, i-binding is irrelevant here,
but i-resource needs to be enforced. On the other hand,
consider a program accessing /tmp. It is known that ad-
versaries can write to /tmp, and there is no use placing
restrictions such as that the resource being fetched should
be in /tmp (i-resource is irrelevant). What is needed is a
guarantee that the particular file being resolved is through
trusted bindings (i-binding).

We define invariants on process context rather than sim-
ply processes in general, because the i-binding and i-
resource constraints on each process execution context
that makes the name resolution request may be different.
A process context is defined by the state of the process
at the time of a system call (e.g., process’s execution call
stack). It is well-known that many attacks are caused be-
cause a process expects a resource with particular prop-
erties at a particular system call, but the adversary may
use name resolution ambiguity to produce a resource with
different (i.e., adversary-controlled) properties. For exam-
ple, a text editor might accept adversary-controlled low-
integrity files to edit, but only high-integrity files as shared
libraries – different constraints apply in different process
contexts. Hence, the name resolution invariants categorize
the resource properties into two types: i-binding for those
describing the binding used to retrieve the resource and
i-resource for those properties of the retrieved resource it-
self. Process context allows for different properties per
execution context (e.g., call stack) of the process.

Given these invariants, we find that the prior defenses
relate to the invariants in the following way. System re-
source restrictions enforce the i-resource invariant. Ca-
pabilities enforce a special case of the i-resource invari-
ant: ensuring that the same resource is used in multiple
name resolutions. Namespace management enforces the
i-binding invariant. Finally, program resource restrictions
may imply i-binding and i-resource restrictions, but these
restrictions may be incomplete. That is, the quality of
program resource restrictions depends on the accuracy of
program analyses (static or dynamic) and the effort that
programmers make in helping to improve the results of
such analyses. Since we have little control of what the
programmers may or may not do, the other mechanisms
are necessary to provide defense-in-depth to prevent name
resolution attacks.



Process

Filesystem
Nameserver

(Linux kernel)

LSM
allows 

access?Trigger
LSM Hook

Resolution satisfies 
binding constraints for 
this process context ? 

Request inode 
through filename Fetched inode satisfies 

resource constraints for 
this process context?

(2)

Allow
Access

No

(1)

(3)

(4)

Yes, get 
resolved inode

No
No

Yes, Start resolving 
filename to inode

Yes

Figure 2: Our prototype for the Linux filesystem enforces
invariant i-binding at (3) and i-resource at (4).

4 Experiment

Motivated by previous defenses against memory attacks,
we examine the efficacy of building a system mechanism
to enforce the name resolution invariants. In general, a
system mechanism should implement the four defenses
from the previous section efficiently, and require little or
no programmer effort to use to prevent many attacks. We
explore such defenses in the context of the Linux filesys-
tem, but we envision that such defenses can be applied to
other namespaces similarly.

Experimental Platform. For our experiment, we built
a prototype to enforce the name resolution invariants for
the Linux filesystem. Our in-kernel mechanism mediates
all filesystem name resolutions. To do this, we extended
the SELinux security module to compare a file inode and
its security labeling against the expected inode based on
the requested name and the process’ state during the re-
quest. We also evaluated the performance of our proof of
concept mechanism in enforcing the name resolution in-
variants per individual process system calls (see below).
Another issue we explore is how easy it is to identify
the name resolution invariant constraints for each process
context. We explore where the policies may be obtained
without manual input, particularly in assessing program
resource restrictions.

Prototype Implementation. We implemented our
filesystem namespace enforcement prototype in the Linux
2.6.35 kernel as shown in Figure 2. When a process makes
a filesystem related system call, (1) the kernel’s filesys-
tem name resolver converts the path to an inode. The in-
ode is then (2) passed through the normal OS access con-
trol mechanisms (DAC and LSM access control checks).
If the access is valid, during the resolution process, we

(3) check if the binding used to resolve the inode satis-
fies any constraints for that particular process context (if
any exist), thus maintaining i-binding. Next, (4) we ver-
ify that the fetched inode satisfies any constraints required
for that particular process context (if any exist), main-
taining invariant i-resource. We currently approximate i-
binding by asserting that some resolutions use a private
namespace, approximately the basic mechanism of Chari
et al. [5]. Only resolutions that pass both the i-resource
and i-binding rules are accepted. Currently, we use the
program counter of the calling process as the process con-
text, to enable applying different i-resource and i-binding
requirements at each point where the program requests a
name resolution.

Security Results. We now examine how our prototype
integrates into the four prior defenses.

System Resource Restriction. Our prototype can verify
that the resource retrieved as a result of a name lookup
is within a set of authorized resources for that particular
access to satisfy invariant i-resource. The authorized re-
sources are represented by a set of inodes and a set of
security labels. The retrieved inode must be a descen-
dant of one of the inodes in the authorized resources and
have a security label in the set of authorized security la-
bels. For example, to prevent link and parsing vulnera-
bilities, the inode must be a descendant of the authorized
inode. To prevent squatting and untrusted input, the label
of the inode must be in the authorized set, which are deter-
mined by application. Use of untrusted, dynamic libraries
can be prevented by limiting the inodes to specific subtree
(e.g., in /lib and /usr/lib) or to specific labels (e.g.,
SELinux label lib t).

Capabilities. Capabilities are a direct reference to a re-
source, and elide the need for name resolution. We can
mimic capabilities in our prototype by requiring use of
a particular resource from a prior resolution. For exam-
ple, to prevent TOCTTOU attacks, the prototype can en-
force that the vulnerable system call (e.g., open() after
access()) use a previously resolved inode (in this case,
the same inode as was referenced in the access() call).
In effect, we have assigned a capability to the open()
interface. Determining when to require the same resource
is a challenge. Researchers have identified the combina-
tions of system calls that are vulnerable to TOCTTOU at-
tacks [22] to guide the identification of such requirements
from program intent. We use such information to collect
likely TOCTTOU cases from program resource restric-
tions, described further below.

Namespace Management. As mentioned above, we im-
plemented a mechanism to restrict some process contexts
to use the existence of a per-process namespace for res-
olution, emulating the basic enforcement mechanism in
Chari et al. [5]. This can prevent a number of attacks, such



as ones against squatting on temporary files. In this way,
only a process can only resolve names to the resources
that it created in /tmp, and adversary processes cannot
modify the bindings in a victim’s /tmp directory, as they
cannot change this namespace. As Chari et al. noted [5],
there may be legitimate cases where untrusted bindings
may be used, and they implement some further defenses
based on heuristics for these more complex cases. We
have not yet implemented a general mechanism for en-
forcing more complex rules, although those authors have
shown that the necessary binding information is accessi-
ble. Also, recall that we argued previously that using i-
resource invariant constraints instead may be more effec-
tive than trying to control the binding alone.

Program Resource Restrictions. By knowing more
about what a program is expected to do, we can further re-
strict the scope of resources accessible at various process
contexts. We explore the effectiveness of runtime pro-
gram analysis to generate name resolution constraints for
process contexts. MAC policy writers use runtime anal-
ysis of programs to determine their least privilege poli-
cies [21]. Many Linux packages now include a test suite
for evaluating the function and robustness of these pro-
grams. We run these test suites to gather runtime infor-
mation. In our experiment, we use the runtime analysis to
identify likely TOCTTOU system calls to generate con-
straints (i.e., cases where the same name is used across
known vulnerable system call sequences). We also believe
that runtime analysis will be useful for identifying pro-
cess contexts that should be limited to trusted resources
(e.g., to prevent search path vulnerabilities and squatting
attacks). We envision that a combination of both static
and runtime analyses should be performed, although a key
problem is that the actual invariant constraints may de-
pend on the particular configuration of the program.

Prototype Performance. A performance concern is that
we might have a large rule base specifying valid reso-
lutions for different running process contexts, and thus
traversing rules might incur much overhead. Thus, we
ran the system on a simple rule base to assess the basic
performance. Our rule base consists of rules that protect
pairs of system calls against TOCTTOU attacks for var-
ious processes, by making sure the latter system call is
given capabilities to access only the object that the former
system call has checked for [22] (enforcing i-resource).

For a macrobenchmark, we chose compiling Apache,
as it performs a relatively high number of filesystem op-
erations, and would represent close to a worst case for
us. We found an overhead of 2.8%. We also measured the
overhead on individual system calls that access the filesys-
tem namespace, They ranged from 4% for read/write
calls, 17% for open/close calls, to 27% for stat/access
calls. The access system call performs very little apart

from checking for access, and hence has a maximum over-
head. However, this is amortized over the higher cost for
other system calls, as we find in the macrobenchmark.

5 Discussion and Future Work
Our experiment shows that it may be possible to control
name resolution by leveraging a combination of the four
prior defenses to enforce name resolution invariants per
process context. However, this preliminary investigation
raises several, interesting research questions:

• Can we enforce both i-binding and i-resource invari-
ants using a single mechanism? Current approaches
either enforce bindings or resources retrieval, but not
both. A coherent approach could utilize whichever
approach is most effective for a particular defense.

• Can the same name resolution enforcement tech-
niques be applied to all namespaces? We see that
some namespaces, such as Android and DOM ob-
jects, use namespaces where multiple objects may
have the same name. It would seem that i-binding
or i-resource could enforce such resolutions, but are
there application-specific requirements that may not
easily be captured in either of these invariants?

• Can we generate the most efficient invariants for en-
forcement? Then, a question becomes whether the
most efficient enforcement policy can be determined
from the programs. For example, to prevent TOCT-
TOU attacks, we may simply restrict vulnerable op-
erations to use the same resource, rather than enforc-
ing bindings.

• Does it really matter whether the runtime analysis
generates complete name resolution policies? Us-
ing runtime analysis, we can collect name resolution
policies, but these may be too conservative. For ex-
ample, there may be authorized cases that are not
seen by the runtime analysis. Therefore, there may
be acceptable cases that need to be added to the pol-
icy after the fact. Rather than extending policies
manually, we can examine techniques for generating
policies automatically, such as Bouncer [9].

• Can we develop a general approach to name reso-
lution enforcement? Given an enforcement mecha-
nism, automated policy generation, and automated
policy optimization, can we build a library that builds
and maintains name resolution enforcement policies
automatically for all kinds of namespaces?

If such questions can be answered in the affirmative,
then attacks based on name resolution can be greatly re-
duced, as buffer overflow attacks have been. However,



as Cai et al. showed [4], developing guaranteed defenses
against TOCTTOU attacks (i.e., one form of name reso-
lution attacks) depends on an accurate understanding of
program semantics, which may be beyond what is com-
putationally tractable. Thus, name resolution enforcement
provides defense-in-depth to prevent attacks that may be
overlooked by programmers.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In Proceedings of CCS ’05. ACM, 2005.

[2] M. Bishop and M. Dilger. Checking for Race Conditions in File
Accesses. Computing systems, 1996.

[3] J. Burns. Developing Secure Mobile Applications For Android.

[4] X. Cai, Y. Gui, and R. Johnson. Exploiting unix file-system races
via algorithmic complexity attacks. In Proceedings of the 30th
IEEE Symposium on Security and Privacy, 2009.

[5] S. Chari, S. Halevi, and W. Venema. Where do you want to go
today? Escalating Privileges by Pathname Manipulation. In NDSS,
2010.

[6] D. R. Cheriton. The v Distributed System. Communications of the
ACM, 1988.

[7] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and
Internet Security; Repelling the Wily Hacker. Addison-Wesley,
2003.

[8] E. Chin et al. Analyzing Inter-Application Communication in An-
droid. In MobiSys, 2011.

[9] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: securing software by blocking bad input. In Proceed-
ings of SOSP ’07. ACM, 2007.

[10] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: auto-
matic adaptive detection and prevention of buffer-overflow attacks.
In Proceedings of the 7th USENIX Security Symposium, 1998.

[11] D. Dean and A. Hu. Fixing races for fun and profit. In Proceedings
of the 13th USENIX Security Symposium, 2004.

[12] L. Gong. A Secure Identity-Based Capability System. In Proceed-
ings of IEEE Symposium on Security and Privacy, 1989.

[13] Homepage of PaX. http://pax.grsecurity.net/, 2008.

[14] N. Hardy. The KeyKOS architecture. Operating Systems Review,
19(4):8–25, Oct. 1985.

[15] N. Hardy. The confused deputy. Operating Systems Review,
22(4):36–38, Oct. 1988.

[16] P. A. Karger and A. J. Herbert. An Augmented Capability Archi-
tecture to Support Lattice Security and Traceability of Access. In
Security and Privacy, IEEE Symposium on, 1984.

[17] R. Marmorstein and P. Kearns. A Tool for Automated iptables
Firewall Analysis. In Proceedings of the USENIX Annual Techni-
cal Conference, 2005.

[18] R. Needham. “Names”. Distributed systems, S. Mullender, ed.,,
1989.

[19] OpenVZ. http://wiki.openvz.org/Main Page.

[20] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from
Bell Labs. In UKUUG Proc. of the Summer 1990 Conf, 2006.

[21] N. Provos. Improving host security with system call policies. In
Proceedings of USENIX SS ’03, 2003.

[22] C. Pu and J. Wei. A Methodical Defense against TOCTTOU At-
tacks: The EDGI Approach. In ISSSE, 2006.

[23] J. S. Shapiro and S. Weber. Verifying the EROS Confinement
Mechanism. In IEEE Symposium on Security and Privacy, 2000.

[24] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva. Portably solving
file tocttou races with hardness amplification. In Proceedings of
the 6th USENIX FAST. USENIX, 2008.

[25] w3schools. HTML DOM Document getElementById()
Method. http://www.w3schools.com/jsref/
met doc getelementbyid.asp.

[26] R. Watson, J. Anderson, and B. Laurie. Capsicum: practical capa-
bilities for UNIX. In Proceedings of USENIX SS ’10, 2010.


