
STING: Finding Name Resolution Vulnerabilities in Programs

Hayawardh Vijayakumar, Joshua Schiffman and Trent Jaeger
Systems and Internet Infrastructure Security Laboratory,

Department of Computer Science and Engineering,
The Pennsylvania State University

{hvijay,jschiffm,tjaeger}@cse.psu.edu

Abstract
The process of name resolution, where names are re-
solved into resource references, is fundamental to com-
puter science, but its use has resulted in several classes
of vulnerabilities. These vulnerabilities are difficult for
programmers to eliminate because their cause is exter-
nal to the program: the adversary changes namespace
bindings in the system to redirect victim programs to a
resource of the adversary’s choosing. Researchers have
also found that these attacks are very difficult to prevent
systematically. Any successful defense must have both
knowledge about the system namespace and the program
intent to eradicate such attacks. As a result, finding and
fixing program vulnerabilities to such as attacks is our
best defense. In this paper, we propose the STING test
engine, which finds name resolution vulnerabilities in
programs by performing a dynamic analysis of name res-
olution processing to produce directed test cases when-
ever an attack may be possible. The key insight is that
such name resolution attacks are possible whenever an
adversary has write access to a directory shared with the
victim, so STING automatically identifies when such di-
rectories will be accessed in name resolution to produce
test cases that are likely to indicate a true vulnerability
if undefended. Using STING, we found 21 previously-
unknown vulnerabilities in a variety of Linux programs
on Ubuntu and Fedora systems, demonstrating that com-
prehensive testing for name resolution vulnerabilities is
practical.

1 Introduction

The association between names and resources is funda-
mental to computer science. Using names frees computer
programmers from working with physical references to
resources, allowing the system to store resources in the
way that it sees fit, and enables easy sharing of resources,
where different programs may use the different names for

the same object. When a program needs access to a re-
source, it presents a name to a name server, which uses
a mechanism called name resolution to obtain the corre-
sponding resource.

While name resolution simplifies programming in
many ways, its use has also resulted in several types
of vulnerabilities that have proven difficult to eliminate.
Adversaries may control inputs to the name resolution
process, such as namespace bindings, which they can
use to redirect victims to resources of the adversaries’
choosing. Programmers often fail to prevent such at-
tacks because they fail to validate names correctly, fol-
low adversary-supplied namespace bindings, or lack in-
sight into which resources are accessible to adversaries.
Table 1 lists some of the key classes of these vulnerabil-
ities.

While a variety of system defenses for these attacks
have been proposed, particularly for name resolution at-
tacks based on race conditions [14, 20, 22, 39, 40, 48, 50–
52, 57], researchers have found that such defenses are
fundamentally limited by a lack of knowledge about the
program [12]. Thus, the programmers’ challenge is to
find such vulnerabilities before adversaries do. How-
ever, finding such vulnerabilities is difficult because the
vectors for name resolution attacks are outside the pro-
gram. Table 1 shows that adversaries may control names-
pace bindings to redirect victims to privileged resources
of their choice, using what we call improper binding at-
tacks or redirect victims to resources under the adver-
saries’ control, using what we call improper resource at-
tacks. Further, both kinds of attacks may leverage the
non-atomicity of various system calls to create races,
such as the time-of-check-to-time-of-use (TOCTTOU)
attacks [6,38], which makes them even more difficult for
victims to detect.

Researchers have explored the application of dynamic
and static analysis to detect namespace resolution at-
tacks. Dynamic analyses [1, 32, 35, 36, 56] log observed
system calls to detect possible problems, such as check-



Attack CWE ID
Improper Binding Attacks
UNIX Symlink Following CWE-61
UNIX Hard Link Following CWE-62
Improper Resource Attacks
Resource Squatting CWE-283
Untrusted Search Path CWE-426
Attacks Caused by Either Bindings or Resources
TOCTTOU Race Condition CWE-362

Table 1: Classes of name resolution attacks.

use pairs that may be used in TOCTTOU attacks. How-
ever, the existence of problems does not necessarily
mean that the program is vulnerable. Many of the check-
use pairs found were not exploitable. Static analyses use
syntactic analyses [6,53] and/or semantic models of pro-
grams to check for security errors [15, 44], sometimes
focusing on race conditions [27]. These static analyses
do not model the system environment, however, so they
often produce many false positives. In addition, several
of these analyses result in false negatives as they rely
on simpler models of program behavior (e.g., finite state
machines), limited alias analysis, and/or manual annota-
tions.

The key insight is that such name resolution attacks
are possible only when an adversary has write access to
a directory shared with the victim. Using this write ac-
cess, adversaries can plant files with names used by vic-
tims or create bindings to redirect the victim to files of
the adversaries’ choice. Chari et al. [14] demonstrated
that when victims use such bindings and files planted by
adversaries attacks are possible, so they built a system
mechanism to authorize the bindings used in name reso-
lution. However, we find that only a small percentage of
name resolutions are really accessible to adversaries and
most of those are defended by programs. Further, the
solution proposed by Chari et al. is prone to false posi-
tives, as any pure system solution is, because it lacks in-
formation about the programs’ expected behaviors [12].
Instead, we propose to test programs for name resolu-
tion vulnerabilities by having the system assume the role
of an adversary, performing modifications that an adver-
sary is capable of, at runtime. Using the access control
policy and a list of adversarial subjects, the system can
determine whether an adversary has write access to a di-
rectory to be used in a name resolution. If so, the sys-
tem prepares an attack as that adversary would and de-
tect whether the program was exploited or immune to
the attack (e.g., did the program follow the symbolic link
created?). This is akin to directed black-box testing [23],
where a program is injected with a dictionary of com-
monly known attacker inputs.

In this paper, we design and implement the STING test

engine, which finds name resolution vulnerabilities in
programs by performing a dynamic analysis of name res-
olution processing to produce directed test cases when-
ever an attack may be possible. STING is an extension
to a Linux Security Module [58] that implements the ad-
ditional methods described above to provide comprehen-
sive, system-wide testing for name resolution vulnera-
bilities. Using STING, we found 21 previously-unknown
name resolution vulnerabilities in 19 different programs,
ranging from startup scripts to mature programs, such as
cups, to relatively new programs, such as x2go. We de-
tail several bugs to demonstrate the subtle cases that can
be found using STING. Tests were done on Ubuntu and
Fedora systems, where interestingly some bugs only ap-
peared on one of the two systems because of differences
in the access control policies that implied different ad-
versary access.

This research makes the following novel contribu-
tions:

• We find that name resolution attacks are always pos-
sible whenever a victim resolves a name using a
directory where its adversaries have permission to
create files and/or links, as defined in Section 3. If a
victim uses such a directory in resolving a name, an
adversary may redirect them to a resource of the ad-
versary’s choosing, compromising victims that use
such resources unwittingly.

• We develop a method for generating directed test
cases automatically that uses a dynamic analysis to
detect when an adversary could redirect a name res-
olution in Section 4.1.

• We develop a method for system-wide test case pro-
cessing that detects where victims are vulnerable to
name resolution attacks, restores program state to
continue testing, and manages the testing coverage
in Section 4.2.

• We implement a prototype system STING for Linux
3.2.0 kernel, and run STING on the current versions
of Linux distributions, discovering 21 previously-
unknown name resolution vulnerabilities in 13 dif-
ferent programs. Perhaps even more importantly,
STING finds that 90% of adversary-accessible name
resolutions are defended by programs correctly,
eliminating many false positives.

We envision that STING could be integrated into sys-
tem distribution testing to find programs that do not ef-
fectively defend themselves from name resolution at-
tacks given that distribution’s access control policy be-
fore releasing that distribution to the community of
users.



2 Problem Definition

Processes frequently require system level resources like
files, libraries, and sockets. Since the system’s manage-
ment of these objects is unknown to the process, names
are used as convenient references to the desired resource.
A name resolution server is responsible for converting
the requested resource name to the desired object via a
namespace binding. Typical namespaces in Unix-based
systems include the filesystem and System V IPC names-
paces (semaphores, shared memory, message queues,
etc.). Some namespaces may even support many-to-one
mappings (e.g., multiple pathnames may be linked to the
same file inode).

Unfortunately, various name resolution attacks are
possible when an attacker is able to affect this indirection
between the desired resource and its name. In this sec-
tion, we broadly outline two classes of name resolution
attacks and give several instances of them. We then dis-
cuss how previous efforts attempt to defend against these
attacks and their limitations. Finally, we present our so-
lution, STING, that overcomes many of these shortcom-
ings.

V / var mail root

A

open("/var/
mail/root")

Filesystem Namespace

etc passwd Link

V / var mail

root
(adversary 

mail 
contents)

A

open("/var/
mail/root")

Filesystem Namespace

Improper 
Resource 

Attack

Improper 
Binding 
Attack

- binding - resource

Figure 1: Improper binding and improper resource attacks. A
and V are adversary and victim processes respectively.

2.1 Name Resolution Attacks

Malicious parties can control the name resolution pro-
cess by modifying the namespace’s binding to trick
victim processes into accessing unintended resources.
We find that these attacks can be categorized into two
classes. The first, improper binding attacks, are when
attackers introduce bindings to resources outside of the
attackers control. This can give adversary indirect access
to the resource through the victim. Such attacks are in-
stances of the confused deputy [33]. The second class,
improper resource attacks, is when an attacker creates an

unexpected binding to a resource the adversary controls.
Instances of these attacks depend on the namespace.

For example, the filesystem namespace is often exploited
through malicious path bindings like symbolic links and
the creation of files with frequently used names. Con-
sider a mail reader program running as root attempting
to check mail from /var/mail/root. Users in the mail
group are permitted to place files in this directory for the
program to read and send. Figure 1 demonstrates how
name resolution attacks from both categories could be
performed on this program.

• Symbolic link following: The adversary wishes to
exfiltrate a protected file (/etc/passwd) that it can-
not normally access. Since users in group mail are
permitted to create (and delete) bindings (files) in
/var/mail, the adversary inserts a symbolic link
/var/mail/root in the namespace that is bound to
the desired file. If a victim mail program running as
root does not check for this link, it might inadver-
tently leak the protected file. A similar attack can be
launched through hard links. This is an instance of
an improper binding attack, where adversaries use
control of bindings to redirect victim programs with
privileges to access or modify resources the adver-
saries cannot directly.

• Squatting: Even if the mail program defends itself
against link following attacks, the adversary could
simply squat a file on /var/mail. If the mail pro-
gram accepts this file, the adversary could spoof the
contents of mail read by root. This is an example
of an improper resource attack, where the adversary
uses control of bindings to create a resource under
her control when the victim does not expect to in-
teract with the adversary.

• Untrusted search path: Programs frequently rely
on files like system libraries or configuration files,
but the names they supply to access these files
may be wrong. One frequent cause is the program
supplying a name relative to its working directory,
which causes a problem if the working directory is
adversary controlled. Adversaries can then simply
bind arbitrary resources at these filenames, possi-
bly gaining control of the victim’s program. This
is another instance of an improper resource attack,
where the adversary supplies an improper resource
to the victim.

While the attacks an adversary can carry out are well
known, the ways in which programs defend themselves
are often ad hoc and complex [13]. Even the most
diligent programs may fail to catch all the ways in
which an adversary might manipulate these namespaces.



Moreover, defenses to these attacks can often be cir-
cumvented through time-of-check-to-time-of-use (TOCT-
TOU) attacks. To do this, the adversary waits until the
mail program checks that /var/mail/root is a regular
file prior to opening it and then switches the file to a link
before the open call is made. Given the variety of possi-
ble name resolution attacks and the complex code needed
to defend against them, it should come as little surprise
that vulnerabilities of this type continue to be uncovered.
Such attacks contribute 5-10% of CVE entries each year.

2.2 Detecting Name Resolution Attacks
Researchers have explored a variety of dynamic and
static analyses to detect instances of name resolution at-
tacks, particularly TOCTTOU attacks. However, all such
analyses are limited in some ways when applied to the
problem of detecting name resolution attacks.

Static Analysis Static analyses of TOCTTOU at-
tacks vary from syntactic analyses specific to check-use
pairs [6, 53], to building various models of programs to
check for security errors [15,44,45], to race conditions in
general [27]. However, static analyses are disconnected
from essential environmental information, such as the
system’s access control policy to determine whether an
adversary can even launch an attack. For example, a pro-
gram may legitimately accesses files in /proc without
checking for name resolution attacks; however, the same
cannot be done in /tmp. Thus, these analyses yield a
significant number of false positives. Further, static tech-
niques are limited to TOCTTOU attacks, due to the ab-
sence of standardized program checks against name res-
olution attacks in general.

Dynamic Analysis Dynamic analyses [1,32,35,36,56]
typically take a system-wide view, logging observed sys-
tem calls from processes to detect possible problems,
such as check-use pairs. Dynamic analyses can also de-
tect specific vulnerabilities, either at runtime [36] or after
the fact [35]. Compared to static analyses, dynamic anal-
yses can take into account the system’s environment, but
suffer the disadvantage of being unaware of the internal
code of the program. In addition, the quality of dynamic
analysis is strongly dependent on the test cases produced.
Because name resolution attacks require an active adver-
sary, the problem is to produce adversary actions in a
comprehensive manner. Using benign system traces may
identify some vulnerabilities, such as those built-in to the
normal system configuration [13], but will miss many
other feasible attacks. Finally, any dynamic analysis
must distinguish program actions that are safe from those
that are vulnerable effectively. We have found that pro-
grams successfully defend themselves from a large per-

centage of the attempted name resolution attacks (only
12.5% were vulnerable), so test case processing must
find cases where program defenses are actually missing
or fail. Since previous dynamic analyses lack insight into
the program, several false positives have resulted.

Symbolic Execution Researchers have recently had
success finding the conditions under which a program
is vulnerable using symbolic execution [7, 8, 10, 11, 18,
19, 25, 29–31, 46]. Symbolic execution has been used to
produce test cases for programs to look for bugs [9, 37],
to generate filters automatically [8, 18], and to generate
test cases to leverage vulnerabilities in programs [3] au-
tomatically. In these symbolic execution analyses, the
program is analyzed to find constraints on the input val-
ues that lead to a program instruction of interest (i.e.,
where an error occurs). Then, the symbolic execution
engine solves for those constraints to produce a concrete
test case that when executed would follow the same path.
Finding name resolution attacks using symbolic execu-
tion may be difficult because the conditions for attack are
determined mainly by the operating environment rather
than the program. While symbolic execution often re-
quires a model of the environment in which to examine
the program, the environment needs to be the focus of
analysis for finding name resolution attacks.

2.3 Our Solution

As a result, we use a dynamic analysis to find name
resolution vulnerabilities, but propose four key enhance-
ments to overcome the limitations of prior analyses of all
types.

First, each name resolution system call is evaluated at
runtime to find the bindings used in resolution and to de-
termine whether an adversary is capable of applying one
or more of the attack types listed in Table 1. If so, a test
case resource is automatically produced at an adversary-
redirected location in the namespace and provided to the
victim. As a result, test cases are only applied where
adversaries have the access necessary to perform such
attacks.

Second, we track the victim’s use of the test case re-
source to determine whether it accepts the resource as
legitimate. If the victim uses the resource (e.g., reads
from it), we log the program entrypoint1 that obtained
the resource as vulnerable. While it is not always pos-
sible to exploit such a flaw to compromise the program,
this approach greatly narrows the number of false posi-
tives while still locating several previously-unknown true

1A program entrypoint is a program instruction that invoked the
name resolution system call, typically indirectly via a library (e.g.,
libc).



vulnerabilities. We also log the test cases run by program
entrypoint to avoid repeating the same attack.

Third, another problem with dynamic analysis is
ensuring that the analysis runs comprehensively even
though programs may fail or take countermeasures when
attacks are detected. We take steps to keep programs
running regardless of whether they fall victim to the at-
tack or not. Our test case resources use the same data as
the expected resource to enable vulnerable programs to
continue, and we automatically revert namespaces after
completion of a test and restart programs that terminate
when an attempted attack on them is detected.

3 Testing Model

In this section, we define an adversarial model that we
use to generate test cases that can be used to identify pro-
gram vulnerabilities.

Our goal is to discover vulnerabilities that will com-
promise the integrity of a process. Classically, an in-
tegrity violation is said occur when a lower integrity pro-
cess provides input to a higher integrity process or ob-
ject [5, 16]. For the name resolution attacks described in
the last section (see Table 1), integrity violations are cre-
ated in two ways: (1) improper binding attacks, where
adversaries may redirect name resolutions to resources
that are normally not modifiable by adversaries, enabling
adversaries to modify higher integrity objects, and (2)
improper resource attacks, where adversaries may redi-
rect name resolutions to resources that are under the ad-
versaries’ control, enabling adversaries to deliver lower
integrity objects to processes. In this section, we define
how such attacks are run and detected to identify the re-
quirements for the dynamic analysis.

A nameserver performs namespace resolution by us-
ing a sequence of namespace bindings, bi j = (ri,n j,rk),
to retrieve resource rk from resource ri given a name n j.
In a file system, ri is a directory, n j is an element of the
name supplied to the nameserver for resolution, and rk
is another directory or a file. Attacks are possible when
adversaries of a victim program have access to modify
binding bi j to (ri,n j,rk′) or create such a binding if it
does not exist, enabling them to redirect the victim’s pro-
cess to a resource r′k instead of rk. Since bindings cannot
be modified like files, adversaries generally require the
delete permission to remove the old binding and the cre-
ate permission to create the desired binding to perform
such modification. Two types of name resolution attacks
are possible when adversaries have such permission (e.g.,
write permission to directories in UNIX systems).

Improper binding attacks use the permission to
modify a binding to create a link (symbolic or hard) to an
existing resource that is inaccessible to the adversary, as

in symbolic and hard link attacks described above. That
is, the improper binding may lead to privilege escalation
for the adversary by redirecting the victim process to use
an existing resource on behalf of that adversary.

Improper resource attacks use the permission to
modify a binding to create a new resource controlled by
the adversary. That is, the adversary tries to trick the
victim into using the improper resource to enable the ad-
versary to provide malicious input to the victim, such as
in resource squatting and untrusted search path attacks
described above.

STING discovers name resolution vulnerabilities by
identifying scenarios where an attack is possible and gen-
erating test cases to validate the vulnerability. Whenever
a name resolution system call is requested by the vic-
tim (i.e., a system call that converts a name to a resource
reference, such as open), STING finds the bindings that
would be used in the namespace resolution process to de-
termine whether an adversary of the process has access to
modify one or more of these bindings. If so, STING gen-
erates an attack test case by producing a test case re-
source, which emulates either an existing, privileged re-
source or a new adversary-controlled resource, and ad-
justing the bindings as necessary to resolve to that re-
source. A reference to this test case resource is returned
to the victim.

Vulnerability in the Victim. We define a victim to be
vulnerable if the victim runs an accept system call using
a reference to the test case resource.

A victim accepts a test case resource if it runs an ac-
cept system call, a system call that uses the returned ref-
erence to the test case resource to access resource data
(e.g., read or write). If a victim is tricked into reading
or writing a resource inaccessible to the adversary, the
adversary can modify the resource illicitly2. If a victim
is tricked into reading or writing a resource that is con-
trolled by the adversary, then the adversary can control
the victim’s processing.

4 Design

The design of STING is shown in Figure 2. STING is di-
vided into two phases. The attack phase of STING is
invoked at the start of a name resolution system call.
STING resolves the name itself to obtain the bindings that
would be used in normal resolution, and then determines
whether an attack is possible using the program’s adver-
sary model. When an attack is possible, STING chooses
an attack from the list in Table 1 that has not already
been tried and produces a test case resource and asso-

2A read operation on a test case resource is indicative of integrity
problems if the resource is opened with read-write access.



Syscall
Invocation

Shadow
Resolution

(name, 
entry point) Attack

Conditions
Satisfied?

Adversary
Model

Resouce

Possible
Adversaries

Attack Search History
Program:Entry Point Attack History

mail:0xbeef Squat:     No
Hardlink: Yes
Symlink:  ???

xord:0x4cb3 Squat:     ???

Untested 
Attack

Handle
SyscallNo

Rollback Information
Program:Entry Point Changes

mail:0xbeef /var/mail/root ->
/etc/high_int_file

Attack
Namespace

Yes

Record changes
 to namespaceIndicate attack

in progress

Resume

(a) Launching an attack

Syscall
Invocation

Program 
vulnerable to 

modified 
resource?

Tainted
Resouce

Handle
SyscallNo

Record
Vulnerability

Recover
from changes

Yes

Attack Search History
Program:Entry Point Attack History

mail:0xbeef Squat:     No
Hardlink: Yes
Symlink:  ???

xord:0x4cb3 Squat:     ???

Rollback Information

Changes

mail:0xbeef /var/mail/root ->
/etc/high_int_file

Program:Entry Point

(b) Detecting a vulnerability

Figure 2: STING consists of two phases: (a) launching an attack, and (b) detecting a vulnerability due to the attack and recovering
original namespace state.

ciated bindings to launch the attack. The detect phase
of STING is invoked on accept system calls. This phase
detects if a process “accepted” STING’s changes, indi-
cating a vulnerability, and records the vulnerability in-
formation in the previously added entry in the attack his-
tory. STING reverts the namespace to avoid side-effects.
These two phases are detailed below.

STING is designed to test systems, not just individual
programs, so STING will generate test cases for any pro-
gram in the system that has an adversary model should
the opportunity arise. To control the environment under
which a program is run, STING intercepts execve sys-
tem calls. For example, programs that may be run by
unprivileged users (e.g., setuid programs) are started in
an adversary’s home directory by this interception code.
Other than initialization, the attack and detect phases are
the same for all processes.

4.1 Attack Phase
Shadow resolution. Whenever a name resolution sys-
tem call is performed, STING needs identify whether an
attack is possible against that system call. The first step
is to collect the bindings that would normally be used
in the resolution. We cannot use the existing name res-
olution mechanism, however, since that has side-effects
that may impact the process and also does not gather the
desired bindings for evaluation. Instead, we perform a
shadow resolution that only collects the bindings.

There are two challenges with shadow resolution.
First, we have to ensure that all name resolution opera-
tions performed by the system are captured in the shadow
resolution. This task can be tricky because some name
resolution is performed indirectly. For example, exec
resolves the interpreter that executes the program in the
“shebang” line in addition to the program whose name is
an argument to the system call. To capture all the name
resolution code, we use Cscope 3 to find all the system

3http://cscope.sourceforge.net/

calls that invoke a fundamental function of name reso-
lution, do_path_lookup. Using this we find 62 system
calls that do name resolution for the Linux filesystem.
The three System V IPC system calls that do name reso-
lution were identified manually.

Second, we need to modify the name resolution code
to collect the bindings used without causing side-effects
in the system. Fortunately, the name resolution code in
Linux does not cause side-effects itself. The system call
code that uses name resolution creates the side-effects.
Thus, we simply invoke the name resolution functions
directly when the system call is received. Some effort
must be taken to format the call to the name resolution
code at the start of the system call, but fortunately the
necessary information is available (name, flags, etc.).

Find vulnerable bindings. To carry out an attack,
STING has to determine whether any adversary of the
program has the necessary permissions to the bindings
involved in the resolution. To answer this question, we
need to identify the program’s adversaries and evaluate
the permissions these adversaries have to bindings effi-
ciently. We note that the specific permissions necessary
to launch an attack are specified in Section 3.

We do not want the dynamic analysis to depend on a
single adversary model for the system, but instead per-
mit the use of program-specific adversary models. The
adversaries of a process are determined by the process’s
subject (i.e., in the access control policy) and optional
program-specific sets of subjects and/or objects that are
adversaries or adversary-controlled, respectively. From
this information, a comprehensive set of adversary sub-
jects are computed. Using a discretionary access control
(DAC) policy, an adversary is any subject other than the
victim and the trusted superuser root. Chari et al. used
the DAC policy in their dynamic analysis [13], which
worked adequately for root processes but incurred some
false positives for processes run under other subjects. For
systems that enforce a mandatory access control (MAC)
policy, methods have been devised to compute the adver-



saries of individual subjects [34, 49]. We note that MAC
adversaries may potentially be running processes under
the same DAC user, so they are typically finer-grained.

Finding the permissions of a process’s adversaries at
runtime must be done efficiently. If a process has several
adversaries, the naive technique of querying the access
control policy for each adversary in turn is unacceptable.
To solve this, we observe we can precompute the adver-
saries of particular process as in a capability-list, where
each process has a list of tuples consisting of an object
(or label in a MAC policy), a list of adversaries with cre-
ate permission to that object (or label), and the list of
adversaries with delete permission to that object (or la-
bel). We store these in a hash table for quick lookup at
runtime.

Identify possible attacks. Once we identify a binding
that is accessible to an adversary, we need to choose an
attack from which to produce a test case. For improper
binding attacks, an attack needs to modify a binding from
an existing resource to the target resource using a sym-
bolic or hard link. Such attacks are only possible in the
Linux filesystem namespace, where a single file (inode)
may have multiple names.

Improper resource attacks are applicable across all
namespaces. We consider two instances of improper re-
source attacks (see Table 1). For resource squatting, at-
tacks are only meaningful if the adversary can supply a
resource with a lower integrity than the victim intended
to access. To determine the victim’s intent, we simply
check if a non-adversarial subject has permissions to sup-
ply the resource the adversary is attacking 4. This occurs
in directories shared by parties at more than one integrity
level. If so, we assume that the victim intended to access
the higher integrity file (i.e., one that could be created by
a non-adversarial subject), and attempt a squatting attack
which succeeds if the victim later accepts the test case re-
source. MOPS [44] uses a similar but narrower heuristic
to identify intent and detect ownership stealing attacks,
which are another case of resource squatting attacks.

Launch an attack. Launching an attack involves
making modifications to the namespace to generate re-
alistic attack scenarios. Different attacks modify the
namespace in different ways. For improper binding at-
tacks, we create a new test case resource (e.g., file)
that represents a privileged resource, and change the
adversary-modifiable bindings to point to it (e.g., sym-
bolic link). For improper resource attacks, we replace
the existing resource (if present) with a new test case re-
source and binding.

Modification of the filesystem namespace in particular
presents challenges of backing up existing files, rollback

4We discount root superuser permissions while checking non-
adversarial subjects, as otherwise root will be a non-adversary in any
directory.

and multiple views for different subjects. First, we have
to change the file system to create the test cases, such
as deleting existing files. Second, once the test case fin-
ishes, we need to rollback the namespace to its original
state. While we can back up files (costing the overhead
of copy), other resources such as UNIX domain sockets
are hard or impossible to rollback once destroyed. An-
other requirement is that the attack should only be visible
to the appropriate victim subjects having the attacker as
an adversary. Thus, direct modification of the existing
filesystem is undesirable.

To solve the above problems, we take inspiration from
the related problem of filesystem unions. Union filesys-
tems unite two or more filesystems (called branches) to-
gether [2,59]. A common use-case is in Live CD images,
where the base filesystem mounted from a CDROM is
read-only, and a read-write branch (possibly temporary)
is mounted on top to allow changes. When a file on the
lower branch is modified, it is “copied up” to the up-
per branch and thereafter hides the corresponding lower
branch file. “Whiteouts” are created on the upper branch
for deleted files.

To support STING, our general strategy is thus to have
a throw-away “upper branch” mounted on top of the un-
derlying filesystem “lower branch”. STING creates re-
sources only on the upper branch. As STING does not
deal with data, files are created empty. Next, STING di-
rects operations to upper branches if the resource exists
on the upper branch and was created by an adversary to
the currently running process. This enables different pro-
cesses to have different views of the filesystem names-
pace.

Once a test case resource is created, we taint it us-
ing extended attributes to identify when it is used in an
accept system call5, signaling a vulnerability. We also
record rollback information about the resources created
in a rollback table.

These changes to the bindings have to be done as the
adversary. The most straightforward option is to have a
separate “adversary process” that is scheduled in to per-
form needed changes. This was the first option we ex-
plored; however, it introduced significant performance
degradation due to scheduling. Instead, we perform the
change using the currently running victim process itself.
We change the credentials of the victim process to that of
the adversary, carry out the change, and then revert to the
victim’s original credentials. We do this without leaving
behind side effects on the victim process’ state. For ex-
ample, if we create a namespace binding using open, we
close the opened file descriptor.

5Some filesystems do not support extended attributes. Since we use
tmpfs as the upper branch, we extended it to add such support for our
testing. For other namespaces such as IPCs, we store the taint status in
a field in the security data structure defined by SELinux.



There are some cases where the system needs to revert
a test case resource back to a “benign” version. “Check”
system calls [56] (e.g., stat, lstat) resolve the name
to verify properties of the resource, so attacks should
present a benign resource to prevent the victim from de-
tecting the attack. We simply redirect such accesses to
the lower branch.

In addition to adversarial modification of the names-
pace, STING also changes process attributes relevant to
name resolution. In particular, it changes the work-
ing directory a process is launched in to an adversary-
controlled directory.

We want to prevent STING from launching the same
attack multiple times. Trying the same attack on the same
system call prevents forward exploration of the attack
space and further program code from being exercised. A
unique attack associates an attack type with a particular
system call entrypoint in the program. Thus, when we
launch an attack, we check an attack history that stores
which attack types have been attempted already and their
result (see Figure 2). We do not attempt multiple binding
changes for an attack type. We have not found any pro-
grams that perform different checks for name resolution
attacks based on the names used. Tracking such history
requires unique identification of system call entrypoints
in the program, which we discuss in Recording below.

4.2 Detect Phase

Detect vulnerability. Detecting whether a victim is vul-
nerable to an attack is relatively straightforward – we
simply have to determine if the program “accepted” the
test case resource. Definition of acceptance for different
attacks are presented in Table 2. On the other hand, we
conclude that the program defends itself properly from
an attack if it: (1) exits without accepting the test case
resource or (2) retries the operation at the same program
entrypoint. When detection determines that a victim is
vulnerable or invulnerable, it fills this information in the
attack history entry created during the attack phase, and
optionally logs the fact.

STING detects successful attacks by identifying use of
a test case resource. Each test case resource is marked
when returned to the victim. To detect when a victim
uses a test case resource, we must have access to the in-
ode, so such checking is integrated with the access con-
trol mechanism (e.g., Linux Security Module). Once a
test case resource is found, we need to determine if it
is being accepted by retrieving the system call invoked.
As an access control check may apply to multiple sys-
tem calls, we have to retrieve the identity of the system
call from the state of the calling process. Vulnerabilities
found have their attack history record logged into user
space.

Attack Accept
Symbolic link write-like, read, readlink
Hard link write-like, read
File squat write-like, read
UNIX-domain socket squat connect

System V IPC squat msgsnd, semop, shmat

Table 2: Table showing calls that signify acceptance, and there-
fore detection, for various attacks. write-like system calls are
any calls that modifies the resource’s data or metadata (e.g.,
fchmod).

We note that the process of detecting a vulnerability
is the same for all attack types, including those based on
race conditions. STING automatically switches resources
between check and use as discussed above, so we only
need to detect when an untrusted resource is accepted.
fstat is not an accept system call, so the “use” of the
test case resource in that system call does not indicate a
vulnerability. Thus, if the program should somehow de-
tect an attack using fstat, preventing further use of the
test case resource, then STING will not record a vulnera-
bility.

Update attack history. Once a particular attack has
been tried on a system call, trying it again in future invo-
cations of the program is redundant and may prevent fur-
ther code from being exercised. Avoiding this problem
requires storing attacks tested for system calls in the at-
tack history. The challenge is unique identification of the
system call entrypoint, which uniquely identifies the in-
struction from which the program made the system call.
To find this instruction, we perform a backtrace of the
user stack to find the first frame within the program that
is not in the libraries. We also extend our system to sup-
port interpreters by porting interpreter debugging code
into the kernel that locates and parses interpreter data
structures to the current line number in the script, for the
Bash, PHP and Python interpreters. Only between 11 and
59 lines of code were necessary for each interpreter. We
use the current line number in the script as the entrypoint
for interpreted programs.

Namespace recovery. Finally, we make changes so
that STING can work online despite changing the names-
pace state. While it appears that such changes could
cause processes to crash, we have not found this to be
the case. Unlike data fuzzing, we find changes in names-
pace state do not cause programs to arbitrarily crash,
as we preserve data and only change resource meta-
data. When an attack succeeds, the only change needed
is to redirect the access to the corresponding resource
in the lower branch of the unioned filesystem that con-
tains the actual data (if one exists), and delete the re-
source in the upper branch. On the other hand, if the
attack fails, STING again deletes the resource in the up-



per branch. Programs that protect themselves proceed in
two ways. First, the program might retry the same sys-
tem call again. Interestingly, we find this happens in a
few programs (Section 6.2). In this case, STING will not
launch an attack at that entrypoint again, and the pro-
gram again continues. Second, the program might exit.
If so, STING records that the attack failed at that entry-
point and restarts the program with its original arguments
(recorded via execve interception). For many programs
that exit, restarting them from the beginning does not af-
fect system correctness. Thus, we find our tool can per-
form online without complex logic. We are currently ex-
ploring how to integrate process checkpointing and roll-
back [17] to carry out recovery more gracefully for the
exit cases.

5 Implementation

Victim
Process

Shadow
Name

Resolve

Test
Attack

Conditions

Get
Process

Entrypoint
Launch 
Attack

Detect
Vulnerable

Access
Record

Modify 
Environment

Core

Sting

Adversary
Model

Log and
History

Recover

Syscall
Begin

LSM
Hooks

SY
S 

CA
LL

SY
S 

RE
T

User Space
Kernel Space

Figure 3: STING is implemented in the Linux kernel and hooks
on to the system call beginning and LSM hooks. It has a modu-
lar implementation. We show here in particular the interaction
between user and kernel space.

Figure 3 shows the overall implementation of STING .
STING is implemented in the Linux 3.2.0 kernel. It hooks
into LSM through the SELinux function avc_has_perm

for its detect phase, and into the beginning of system
calls for its attack phase. STING has an extensible archi-
tecture, with modules registering themselves, and rules
specifying the order and conditions under which mod-
ules are called.

The modules implement functionality corresponding
to the steps shown in the design (Figure 2). The en-
trypoint module uses the process’ eh frame ELF sec-
tion to perform the user stack unwinding. eh frame

replaces the DWARF debug frame section, and is en-
abled by default on Ubuntu 11.10 and Fedora 15 systems.
Stack traces in interpreters yield an entrypoint inside the
interpreter, and not the currently executing script. We
extended our entrypoint module to identify line num-
bers inside scripts for the Bash, PHP and Python inter-
preters [54].

Server Programs Installed
BIND DNS Server Apache Web Server
MySQL Database PHP
Postfix Mail Server Postgresql Database
Samba File Server Tomcat Java Server

Table 3: Server programs installed on Ubuntu and Fedora.

The data for the MAC adversary model is pushed into
the kernel through a special file, and code to use each of
these to decide adversary access is in the test attack con-
ditions module. After launching an attack, the modified
resources are tainted through extended attributes for later
detection when a victim program uses the resource. We
had to extend the tmpfs filesystem to handle extended
attributes. The recording module can print vulnerabili-
ties as they are detected, and also log the vulnerabilities
and search history into userspace files through relayfs.
A startup script loads the attack search history into the
kernel during bootup, so the same attacks are not tried
again.

We prototyped a modified version of the UnionFS
filesystem [59] for STING. We mount a tmpfs as the up-
per branch, and the root filesystem as the lower branch.
The main change involved redirecting to the upper or
lower branches depending on a subject’s adversaries, and
disabling irrelevant UnionFS features such as copy-up.

6 Evaluation

We first evaluate STING ’s ability to finding bugs, as well
as broader security issues in Section 6.1. We then ana-
lyze the suitability of STING as an online testing tool in
Section 6.2

6.1 Security Evaluation
The aim of the security evaluation is to show that:

• STING can detect real vulnerabilities with a high
percentage of them being exploitable in both newer
programs, and older, more mature programs, and

• Normal runtime and static analysis would result in a
large number of false positives, and normal runtime
would also miss some attacks.

We tested STING on the latest available versions of
two popular distributions - Ubuntu 11.10 and Fedora
16. In both cases, we installed the default base Desktop
distribution, and augmented them with various common
server programs (Table 3). Note that STING requires no
additional special setup; it simply reacts to normal name
resolution requests at runtime. We collected data on both
systems over a few days of normal usage.



Adversary model Total Resolutions Adversary Access Vulnerable
DAC - Ubuntu 2345 134 (5.7%) 21 (0.9%)
DAC - Fedora 1654 66 (4%) 5 (0.3%)

Table 4: Table showing the total number of distinct entrypoints
invoking system calls performing namespace resolutions, num-
ber accessible to adversaries under an adversary model, and
number of interfaces for which STING detected vulnerabilities.

6.1.1 Finding Vulnerabilities

Using a DAC attacker model, in total, STING found
26 distinct vulnerable resolutions across 20 distinct pro-
grams (including scripts). Of the 26 vulnerable resolu-
tions, 5 correspond to problems already known but un-
fixed. 17 of these vulnerabilities are latent [13], meaning
a normal local user would have to gain privileges of some
other user and can then attempt further attacks. For ex-
ample, one bug we found required the privileges of the
user postgres to carry out a further attack on root.
This can be achieved, for example, by remote network
attackers compromising the PostgreSQL daemon. For
all vulnerabilities found, we manually verified the source
code that a name resolution vulnerability existed. Sev-
eral bugs were reported, of which 2 were deemed not
exploitable (although a name resolution vulnerability ex-
isted) (Section 6.1.3).

Table 4 shows the total number of distinct name res-
olutions received by STING that were attackable . This
data shows challenges facing static and normal runtime
analysis. Only 4-5.7% of the total name resolutions
are accessible to the adversary under the DAC adver-
sary model. Therefore, static analysis that looks at the
program alone will have a large number of false pos-
itives, because programs do not have to protect them-
selves from name resolutions inaccessible to the adver-
sary. Second, normal runtime analysis cannot differen-
tiate between when programs are vulnerable and when
they protect themselves appropriately. We found only
7.5-15.6% of the name resolutions accessible to the ad-
versary are actually vulnerable to different name reso-
lution attacks. Further, 6 of these vulnerabilities would
simply not have been uncovered during normal runtime;
they are untrusted search paths that require programs to
be launched in insecure directories.

Table 5 shows the total number of vulnerabilities by
type. A single entrypoint may be vulnerable to more than
one type of attack. We note that STING was able to find
vulnerabilities of all types, including 7 that required race
conditions.

Table 6 shows the various programs across which vul-
nerabilities were found. Interestingly, we note that 6
of the 24 vulnerable name resolutions in Ubuntu were
found in Ubuntu-specific scripts. For example, CVE-

Type of vulnerability Total
Symlink following 22
Hardlink following 14
File squatting 10
Untrusted search 6
Race conditions 7

Table 5: Number and types of vulnerabilities we found. Race
is the number of TOCTTOU vulnerabilities, where a check is
made but the use is improper. A single entrypoint in Table 6
may be vulnerable to more than one kind of attack.

Program Vuln. Priv. Escalation Distribution Previously
Entry DAC: uid->uid known

dbus-daemon 2 messagebus->root Ubuntu Unknown
landscape 4 landscape->root Ubuntu Unknown
Startup scripts (3) 4 various->root Ubuntu Unknown
mysql 2 mysql->root Ubuntu 1 Known
mysql upgrade 1 mysql->root Ubuntu Unknown
tomcat script 2 tomcat6->root Ubuntu Known
lightdm 1 *->root Ubuntu Unknown
bluetooth-applet 1 *->user Ubuntu Unknown
java (openjdk) 1 *->user Both Known
zeitgeist-daemon 1 *->user Both Unknown
mountall 1 *->root Ubuntu Unknown
mailutils 1 mail->root Ubuntu Unknown
bsd-mailx 1 mail->root Fedora Unknown
cupsd 1 cups->root Fedora Known
abrt-server 1 abrt->root Fedora Unknown
yum 1 sync->root Fedora Unknown
x2gostartagent 1 *->user Extra Unknown
19 Programs 26 21 Unknown

Table 6: Number of vulnerable entrypoints we found in vari-
ous programs, and the privilege escalation that the bugs would
provide.

2011-4406 and CVE-2011-3151 were assigned to two
bugs in Ubuntu-specific scripts that STING found. Fur-
ther, the programs containing vulnerabilities range from
mature (e.g., cupsd) to new (e.g., x2go). We thus be-
lieve that STING can help in detecting vulnerabilities be-
fore an adversary, if run on test environments before they
are deployed.

MAC adversary model. We carried out similar ex-
periments for a MAC adversary model on Fedora 16’s
default SELinux policy. We assume an adversary limited
only by the MAC labels, and allow the adversary per-
missions to run as the same DAC user. This is one of the
aims of SELinux – even if a network daemon running as
root gets compromised, it should still not compromise
the whole system arbitrarily. However, we found that the
SELinux policy allowed subjects we consider untrusted
(such as the network-facing daemon sendmail_t) cre-
ate permissions to critical labels such as etc_t. Thus
STING immediately started reporting vulnerable name
resolutions whenever any program accessed /etc. Thus,
either the SELinux policy has to be made stricter, the ad-
versary model must be weakened for mutual trust among
all these programs, or all programs have to defend them-
selves from name resolution attacks in /etc (which is
probably impractical). This problem is consistent with
the findings that /etc requires exceptional trust in the
SELinux policy reported elsewhere [42].



01 /* filename = /var/mail/root */

02 /* First, check if file already exists */

03 fd = open (filename, flg);

04 if (fd == -1) {
05 /* Create the file */

06 fd = open(filename, O_CREAT|O_EXCL);

07 if (fd < 0) {
08 return errno;

09 }
10 }
11 /* We now have a file. Make sure

12 we did not open a symlink. */

13 struct stat fdbuf, filebuf;

14 if (fstat (fd, &fdbuf) == -1)

15 return errno;

16 if (lstat (filename, &filebuf) == -1)

17 return errno;

18 /* Now check if file and fd reference the same file,

19 file only has one link, file is plain file. */

20 if ((fdbuf.st_dev != filebuf.st_dev

21 || fdbuf.st_ino != filebuf.st_ino

22 || fdbuf.st_nlink != 1

23 || filebuf.st_nlink != 1

24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file

26 with one link"), filename);

27 close (fd);

28 return EINVAL;

29 }
30 /* If we get here, all checks passed.

31 Start using the file */

32 read(fd, ...)

Figure 4: Code from the GNU mail program in mailutils

illustrating a squat vulnerability that STING found.

6.1.2 Examples

In this section, we present particular examples highlight-
ing STING’s usefulness, and also broader lessons.

Mail Programs. GNU mail is the default mail client
on Ubuntu 11.10, in which STING found a vulnerability.
This example shows the difficulty of proper checking in
programs, and why detection tools with low false pos-
itives are necessary – programmers can easily get such
checks wrong, and there are no standardized ways to
write code to defend against various name resolution at-
tacks.

The code shows the program preparing to read the file
/var/mail/root. In summary, this program creates an
empty file when the file doesn’t already exist (lines 4-
10), using flags (O_EXCL) to ensure that a fresh file is
created. The program performs several checks to verify
the safety of the file opened, guarding against race con-
ditions and link traversal (both symbolic and hard links)
(11-29). Unfortunately, the program fails to protect it-
self against a squatting attack if the file already exists, as
it does not check st_uid or st_gid; any user in group
mail can control the contents of root’s inbox. Interest-
ingly, it protects itself against squatting attacks on line
6.

X11 script STING found a race condition exploitable
by a symbolic link attack on the script that creates
/tmp/.X11-unix in Ubuntu 11.10. The code snippet
is shown in Figure 5. The aim of the script is to cre-

01 SOCKET_DIR=/tmp/.X11-unix

...

02 set_up_socket_dir () {
03 if [ "$VERBOSE" != no ]; then

04 log_begin_msg "Setting up X server socket directory"

05 fi

06 if [ -e $SOCKET_DIR ] && [ ! -d $SOCKET_DIR ]; then

07 mv $SOCKET_DIR $SOCKET_DIR.$$

08 fi

09 mkdir -p $SOCKET_DIR

10 chown root:root $SOCKET_DIR

11 chmod 1777 $SOCKET_DIR

12 do_restorecon $SOCKET_DIR

13 [ "$VERBOSE" != no ] && log_end_msg 0 || return 0

14 }

Figure 5: Code from an X11 startup script in Ubuntu 11.10 that
illustrates a race condition that STING found.

ate a root-owned directory /tmp/.X11-unix. Lines 6-8
check if such a file already exists that is not a directory,
and if so, moves it away so a directory can be created.
In Line 9, the programmer creates the directory, and as-
sumes it will succeed, because the previous code had just
moved any file that might exist. However, because /tmp
is a shared directory, an adversary scheduled in between
the moving of the file and the mkdir might again create
a file in /tmp/.X11-unix, thus breaking the program-
mer’s expectation. If the file is a link pointing to, for ex-
ample, /etc/shadow, the chmod on Line 11 will make
it world-readable. STING was able to detect this race
condition by changing the resource into a symbolic link
after the move and before the creation on line 9, as it acts
just before the system call on line 9. This script has ex-
isted for many years, showing how it is easy to overlook
such conditions. This also shows how STING can syn-
chronously produce any race condition an adversary can,
because it is in the system. This script was independently
fixed by Ubuntu in its latest release. The discussion page
for the bug [21] shows how such checks are challenging
to get right even for experienced programmers. Conse-
quently, manually scanning source code can also easily
miss such vulnerabilities.

mountall This program has an untrusted search path
that is not executed in normal runtime but was dis-
covered by STING. This Ubuntu-specific utility simply
mounts all filesystems in /etc/fstab. When launched
in an untrusted directory, it issues mount commands that
search for files such as none and fusectl in the cur-
rent working directory. If these are symbolic links, then
the contents of these files are read through readlink,
and put in /etc/mtab. Thus, the attacker can influence
/etc/mtab entries and potentially confuse utilities that
depend on this file, such as unmounters. This is an exam-
ple of how very specific conditions are required to detect
the attack – the program needs to be launched in an ad-
versarial directory, and the name searched for needs to
be a symbolic link. Normal runtime would not give any
hint of such attacks.



postgresql init script. This vulnerability high-
lights the challenge facing developers and OS distrib-
utors. This script runs as root, and is vulnerable to
symbolic and hard link attacks on accessing files in
/etc/postgresql. That directory is owned by the user
postgres, which could be compromised by remote at-
tacks on PostgreSQL, who can then use this vulnerabil-
ity to gain root privileges. The problem is that the de-
velopers who wrote the script did not expect the direc-
tory /etc/postgresql to be owned by a non-root user.
However, the access control policy did not reflect this as-
sumption. STING is useful in finding such discrepancies
in access control policies as it can run with attacker mod-
els based on different policies.

6.1.3 False Positives

Two issues in STING cause false positives.
Random Name. The programs

yum, abrt-server, zeitgeist-daemon in Ta-
ble 6 were vulnerable to name resolution attacks, but
defended themselves by creating files with random
names. Library calls such as mktemp are used to create
such names. STING cannot currently differentiate be-
tween “random” and “non-random” names. Exploiting
such vulnerabilities requires the adversary to guess
the filename, which may be challenging given proper
randomness. In any case, such bugs can be fixed by
adding the O_EXCL flag to open when creating files.

Program Internals. STING does not know the in-
ternal workings of a program. Thus, it cannot know if
use of a resource from a vulnerable name resolution can
affect the program or not, and simply marks it for fur-
ther perusal. A vulnerable name resolution involving
a write-like accept operation can always be exploited.
However, whether those involving read can be exploited
depends on the internals of the program. Eight of the
26 vulnerable name resolutions in Table 6 are due to
read. While this has led to some false positives (two
additional vulnerable name resolutions involving read

not in Table 6 were deemed to not affect program func-
tioning), STING narrows the programmers’ effort signifi-
cantly. Nonetheless, more knowledge regarding program
internals would improve the accuracy even further.

6.2 Performance Evaluation

We measured the performance of STING to assess its
suitability as an online testing tool. While the perfor-
mance of STING is of not of primary importance be-
cause it is meant to be run on test environments in non-
production systems before deployment, it must neverthe-
less be responsive to online testing. We measured per-
formance using micro- and macro-benchmarks. While

Case Time (µs) Overhead
Attack Phase: open system call

Base 14.57 –
+ Find Vulnerable Bindings 31.44 2.15×
+ Obtain entrypoint and 211.20 12.33×
check attack history
+ Launch attack 365.87 25.1×

Detect Phase: read system call
Base 8.73 –
+ Detect vulnerability 9.18 1.05×
+ Namespace recovery 63.08 7.22×

Table 7: Micro-overheads for system calls showing median
over 10000 system call runs.

Benchmark Base STING Overhead
Apache 2.2.20 151.65s 163.79s 8%
compile
Apachebench:
Throughput 231.77Kbps 221.89Kbps 4.33%
Latency 1.943ms 2.088ms 7.46%

Table 8: Macro-benchmarks showing compilation and Apache-
bench throughput and latency overhead. The standard deviation
was less than 3% of the mean.

STING does cause noticeable overhead, it did not impede
our testing. All tests were done on a Dell Optiplex 980
machine with 8GB of RAM.

Micro-performance (Table 7) was measured by the
time taken for individual system calls under varying con-
ditions. For an attack launch, system call overhead is
caused by the time to (1) detect adversary accessibility,
(2) get and compare process entrypoint against attack
history, and (3) launch the attack. The main overhead
is due to obtaining the entrypoint to check the attack his-
tory and carrying out the attack. However, obtaining the
entrypoint is required only if the name resolution is ad-
versary accessible (around 4-5.7% in Table 4), and an
attack is launched only once for a particular entrypoint,
thereby alleviating their impact on overall performance.
For the detection phase, we have (1) detect vulnerable
access, and (2) rollback namespace. Namespace recov-
ery through rollback is expensive, but occurs only once
per attack launched.

Macro-benchmarks (Table 8) showed upto 8% over-
head. Apache compilation involved a lot of name res-
olutions and temporary file creation. During our system
tests, the system remained responsive enough to carry out
normal tasks, such as browsing the Internet using Firefox
and checking e-mail. We are investigating further oppor-
tunities to improve performance.

Program retries and restarts. We came across thir-
teen programs that retried a name resolution system call
on failure due to a STING attack test case. The most



common case was temporary file creation – programs
retry until they successfully create a temporary file with
a random name. Programs that retry integrate well with
STING , which maintains its attack history and does not
retry the same attacks on the same entrypoints. On the
other hand, a few programs exited on encountering an at-
tack by STING . We currently simply restart such pro-
grams (Section 4.2). For example, dbus-daemon ex-
ited during boot due to a STING test case and had to
be restarted by STING to continue normal boot. How-
ever, programs may lose state across restarts. We are in-
vestigating integrating process checkpoint and rollback
mechanisms [17].

7 Related Work

Related work that deals with detecting name resolution
attacks was presented in Section 2.2. Here, we discuss
dynamic techniques to detect other types of program
bugs, and revisit some dynamic techniques that detect
name resolution attacks.

Black-box testing. Fuzz testing, an instance of black-
box testing, runs a program under various input data test
cases to see if the program crashes or exhibits unde-
sired behavior. Particular program entrypoints (usually
network or file input) are fed totally random input with
the hope of locating input filtering vulnerabilities such as
buffer overflows [24, 41, 47]. Black-box fuzzing gener-
ally does not scale because it is not directed. To alleviate
this, techniques use some knowledge of the semantics
of data expected at program entrypoints. SNOOZE [4]
is a tool to generate fuzzing scenarios for network pro-
tocols using which bugs in programs were discovered.
TaintScope [55] is a directed fuzzing tool that generates
fuzzed input to pass checksum code in programs. Web
application vulnerability scanners [23] supply very spe-
cific strings to detect XSS and SQL injection attacks.

We find a parallel can be drawn between our approach
and directed black-box testing, where semantics of in-
put data is known. While such techniques change the
data presented to a program to exercise program paths
with possible vulnerabilities, we change the resource, or
the metadata presented to the application for the same
purpose. Thus, STING can be viewed as an instance
of black-box testing that changes the namespace state to
evaluate program responses.

Taint Tracking. Taint techniques track flow of tainted
data inside programs. They can be used to find bugs
given specifications [60], or can detect secrecy leaks in
programs [26]. Flax [43] uses a taint-enhanced fuzzing
approach to detect input filtering vulnerabilities in web
applications. However, taint tracking by itself does not
actively change any data presented to applications, and
thus has different applications.

Dynamic Name Resolution Attacks Detection. As
mentioned in Section 2.2, most dynamic analysis are spe-
cific to detecting TOCTTOU attacks. Chari et al. [13]
present an approach to defend against improper binding
attacks; however, they cannot detect them until they ac-
tively occur in the system. We use active adversaries to
generate test cases and to exercise potentially vulnerable
paths in programs to detect vulnerabilities that would not
occur in normal runtime traces. Further, none of the ap-
proaches deal with improper resource attacks, of which
we detect several.

8 Discussion

Other System State Attacks. More program vulnerabil-
ities may be detected by modifying system state. For ex-
ample, non-reentrant signal handlers can be detected by
delivering signals to a process already handling a signal.
Similarly, return values of system calls can be changed
to cause conditions suitable for attack (e.g., call to drop
privileges fails). While STING could be easily extended
to perform these attacks, we believe that these cases are
more easily handled through static analysis, as standard
techniques are available (e.g., lists of non-reentrant sys-
tem calls, unchecked return value) through tools such as
Fortify [28]. For the reasons we have seen, no such stan-
dard techniques are available for name resolution attacks.

Solutions. One of the more effective ways we have
seen programs defending against improper binding at-
tacks is by dropping privileges. For example, the priv-
ileged part of sshd drops privileges to the user whenever
accessing user files such as .ssh/authorized_keys.
Thus, even if code is vulnerable to improper binding at-
tacks, the user cannot escalate privileges.

User directory. Administrators running as root

should take extreme care when in user-owned directo-
ries, as there are several opportunities for privilege esca-
lation. For example, we found during our testing that if
the Python interpreter is started in a user-owned direc-
tory, Python searches for modules in that directory. If a
user has malicious libraries, then they will be loaded in-
stead. More race conditions are also exploitable as a user
can delete even root-owned files in her directory.

Integration with Black-box Testing. We believe that
STING can also integrate with other data fuzzing plat-
forms [41]. Such tools need special environments (e.g.,
attaching to running processes with debuggers) to carry
out their tests on running programs. Instead, we can take
input from these platforms and use STING to feed such
input into running processes. Since STING also takes into
account the access control policy, opportunities to supply
adversarial data can readily be located.

Deployment. We envision that STING would be de-
ployed during Alpha and Beta testing of distribution re-



leases. We plan to package STING for distributions, so
users can easily install it through the distribution’s pack-
age managers. STING will test various programs as users
are running them, and program vulnerabilities found can
be fixed before the final release. Being a runtime anal-
ysis tool, STING can possibly find more vulnerabilities
as it improves its runtime coverage. Even if a small per-
centage of users install the tool, we expect a significant
increase in the runtime coverage, because different users
configure and run programs in different ways.

9 Conclusion

In this paper, we introduced STING, a tool that detects
name resolution vulnerabilities in programs by dynami-
cally modifying system state. We examine the deficien-
cies of current static and normal runtime analysis for
detecting name resolution vulnerabilities. We classify
name resolution attacks into improper binding and im-
proper resource attacks. STING checks for opportunities
to carry out these attacks on victim programs based on
an adversary model, and if an adversary exists, launches
attacks as an adversary would by modifying namespace
state visible to the victim. STING later detects if the vic-
tim protected itself from the attack, or it was vulnerable.
To allow online operation, we propose mechanisms for
rolling back the namespace state. We tested STING on
Fedora 15 and Ubuntu 11.10 distributions, finding 21
previously unknown vulnerabilities across various pro-
grams. We believe STING shall be useful in detecting
name resolution vulnerabilities in programs before at-
tackers. We plan to release and package STING for dis-
tributions for this purpose.

References
[1] A. Aggarwal and P. Jalote. Monitoring the security health of soft-

ware systems. In ISSRE-06, pages 146–158, 2006.
[2] Aufs. http://aufs.sourceforge.net/.
[3] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. Aeg:

Automatic exploit generation. In Network and Distributed System
Security Symposium, Feb. 2011.

[4] G. Banks et al. . Snooze: Toward a stateful network protocol
fuzzer. In of Lecture Notes in Computer Science, 2006.

[5] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, MITRE, April 1977.

[6] M. Bishop and M. Digler. Checking for race conditions in file
accesses. Computer Systems, 9(2), Spring 1996.

[7] P. Boonstoppel, C. Cadar, and D. Engler. Rwset: attacking path
explosion in constraint-based test generation. In Proceedings of
the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis
of systems, 2008.

[8] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. To-
wards automatic generation of vulnerability-based signatures. In
Proceedings of the 2006 IEEE Symposium on Security and Pri-
vacy, 2006.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems

programs. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation, pages 209–224,
2008.

[10] C. Cadar and D. R. Engler. Execution generated test cases: How
to make systems code crash itself. In SPIN, 2005.

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. ACM
Trans. Inf. Syst. Secur., 12(2), 2008.

[12] X. Cai et al. . Exploiting Unix File-System Races via Algorithmic
Complexity Attacks. In IEEE SSP ’09, 2009.

[13] S. Chari and P. Cheng. Bluebox: A policy-driven, host-based
intrusion detection system. ACM Transaction on Infomation and
System Security, 6:173–200, May 2003.

[14] S. Chari et al. Where do you want to go today? escalating privi-
leges by pathname manipulation. In NDSS ’10, 2010.

[15] B. Chess. Improving computer security using extended static
checking. In Proceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, 2002.

[16] D. D. Clark and D. R. Wilson. A comparison of commercial and
military computer security policies. Security and Privacy, IEEE
Symposium on, 0:184, 1987.

[17] Container-based checkpoint/restart prototype. http://lwn.

net/Articles/430279/.
[18] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.

Bouncer: securing software by blocking bad input. In SOSP,
pages 117–130, 2007.

[19] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end containment of
internet worms. In Proceedings of the twentieth ACM symposium
on Operating systems principles, 2005.

[20] C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman. Race-
guard: Kernel protection from temporary file race vulnerabilities.
In Proceedings of the 10th USENIX Security Symposium, Berke-
ley, CA, USA, 2001. USENIX Association.

[21] init script x11-common creates directories in insecure man-
ners. http://bugs.debian.org/cgi-bin/bugreport.

cgi?bug=661627.
[22] D. Dean and A. Hu. Fixing races for fun and profit. In Proceed-

ings of the 13th USENIX Security Symposium, 2004.
[23] Doup, Adam and Cova, Marco and Vigna, Giovanni. Why Johnny

Can’t Pentest: An Analysis of Black-Box Web Vulnerability
Scanners. In DIMVA, 2010.

[24] W. Drewry and T. Ormandy. Flayer: exposing application inter-
nals. In Proceedings of the first USENIX workshop on Offensive
Technologies, 2007.

[25] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input gener-
ation for database applications. In Proceedings of the 2007 in-
ternational symposium on Software testing and analysis, ISSTA
’07, 2007.

[26] W. Enck et al. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings
of the 9th USENIX conference on Operating systems design and
implementation, 2010.

[27] D. Engler and K. Ashcraft. Racerx: effective, static detection of
race conditions and deadlocks. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, 2003.

[28] Hp fortify static code analyzer (sca). https://www.fortify.

com/products/hpfssc/source-code-analyzer.html.
[29] P. Godefroid. Compositional dynamic test generation. SIGPLAN

Not., 2007.
[30] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated

random testing. In Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation,
2005.

[31] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated white-
box fuzz testing. In Network Distributed Security Symposium
(NDSS). Internet Society, 2008.

http://aufs.sourceforge.net/
http://lwn.net/Articles/430279/
http://lwn.net/Articles/430279/
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=661627
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=661627
https://www.fortify.com/products/hpfssc/source-code-analyzer.html
https://www.fortify.com/products/hpfssc/source-code-analyzer.html


[32] B. Goyal, S. Sitaraman, and S. Venkatesan. A unified approach
to detect binding based race condition attacks. In International
Workshop on Cryptology And Network Security, 2003.

[33] N. Hardy. The confused deputy. Operating Systems Review,
22:36–38, 1988.

[34] T. Jaeger, R. Sailer, and X. Zhang. Analyzing Integrity Protec-
tion in the SELinux Example Policy. In Proceedings of the 12th
USENIX Security Symp., 2003.

[35] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
past and present intrusions through vulnerability-specific predi-
cates. In Proceedings of the twentieth ACM symposium on Op-
erating systems principles, SOSP ’05, pages 91–104, New York,
NY, USA, 2005. ACM.

[36] C. Ko and T. Redmond. Noninterference and intrusion detection.
In Proceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, pages 177–, Washington, DC, USA, 2002. IEEE Computer
Society.

[37] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Au-
tomating mimicry attacks using static binary analysis. In Pro-
ceedings of the 14th conference on USENIX Security Symposium
- Volume 14, pages 11–11, Berkeley, CA, USA, 2005. USENIX
Association.

[38] W. S. McPhee. Operating system integrity in OS/VS2. IBM Syst.
J., 13:230–252, September 1974.

[39] OpenWall Project - Information security software for open envi-
ronments. http://www.openwall.com/, 2008.

[40] J. Park, G. Lee, S. Lee, and D.-K. Kim. Rps: An extension of
reference monitor to prevent race-attacks. In PCM (1) 04, 2004.

[41] Peach fuzzing platform. http://peachfuzzer.com/.
[42] S. Rueda, D. H. King, and T. Jaeger. Verifying compliance of

trusted programs. In Proceedings of the 17th USENIX Security
Symposium, pages 321–334, Aug. 2008.

[43] P. Saxena et al. Flax: Systematic discovery of client-side valida-
tion vulnerabilities in rich web applications. In NDSS, 2010.

[44] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison, and
J. West. Model checking an entire linux distribution for security
violations. In Proceedings of the 21st Annual Computer Security
Applications Conference, 2005.

[45] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison, and
J. West. Model checking an entire linux distribution for security
violations. In Proceedings of the 21st Annual Computer Security
Applications Conference, pages 13–22, Washington, DC, USA,
2005. IEEE Computer Society.

[46] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit test-
ing engine for c. In Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering,
2005.

[47] Sharefuzz. http://sourceforge.net/projects/

sharefuzz/.
[48] K. suk Lhee and S. J. Chapin. Detection of file-based race condi-

tions. Int. J. Inf. Sec., 2005.
[49] W. Sun, R. Sekar, G. Poothia, and T. Karandikar. Practical proac-

tive integrity protection: A basis for malware defense. In Pro-
ceedings of the 2008 IEEE Symposium on Security and Privacy,
May 2008.

[50] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva. Portably solv-
ing file tocttou races with hardness amplification. In Proceedings
of the 6th USENIX Conference on File and Storage Technolo-
gies, FAST’08, pages 13:1–13:18, Berkeley, CA, USA, 2008.
USENIX Association.

[51] E. Tsyrklevich and B. Yee. Dynamic detection and prevention
of race conditions in file accesses. In Proceedings of the 12th
USENIX Security Symposium, pages 243–255, 2003.

[52] P. Uppuluri, U. Joshi, and A. Ray. Preventing race condition at-
tacks on file-systems. In SAC-05, 2005.

[53] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: A static
vulnerability scanner for c and c++ code. In ACSAC, 2000.

[54] H. Vijayakumar, G. Jakka, S. Rueda, J. Schiffman, and T. Jaeger.
Integrity Walls: Finding Attack Surfaces from Mandatory Access
Control Policies. In AsiaCCS, 2012.

[55] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnera-
bility Detection. In IEEE Symposium on Security and Privacy,
2010.

[56] J. Wei et al. Tocttou vulnerabilities in unix-style file systems: an
anatomical study. In USENIX FAST ’05, 2005.

[57] J. Wei et al. A methodical defense against TOCTTOU attacks:
the EDGI approach. In IEEE International Symp. on Secure Soft-
ware Engineering (ISSSE) , 2006.

[58] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman. Linux Security Modules: General security support for
the Linux kernel. In Proceedings of the 11th USENIX Security
Symposium, pages 17–31, August 2002.

[59] C. P. Wright and E. Zadok. Unionfs: Bringing File Systems To-
gether. Linux Journal, pages 24–29, December 2004.

[60] W. Xu, E. Bhatkar, and R. Sekar. Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks. In
In 15th USENIX Security Symposium, pages 121–136, 2006.

http://www.openwall.com/
http://peachfuzzer.com/
http://sourceforge.net/projects/sharefuzz/
http://sourceforge.net/projects/sharefuzz/

	Introduction
	Problem Definition
	Name Resolution Attacks
	Detecting Name Resolution Attacks
	Our Solution

	Testing Model
	Design
	Attack Phase
	Detect Phase

	Implementation
	Evaluation
	Security Evaluation
	Finding Vulnerabilities
	Examples
	False Positives

	Performance Evaluation

	Related Work
	Discussion
	Conclusion

