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Abstract
Processes retrieve a variety of resources from the operating
system in order to execute properly, but adversaries have
several ways to trick processes into retrieving resources of
the adversaries’ choosing. Such resource access attacks use
name resolution, race conditions, and/or ambiguities regard-
ing which resources are controlled by adversaries, account-
ing for 5-10% of CVE entries over the last four years. pro-
grammers have found these attacks extremely hard to elim-
inate because resources are managed externally to the pro-
gram, but the operating system does not provide a suffi-
ciently rich system-call API to enable programs to block
such attacks. In this paper, we present the Process Firewall, a
kernel mechanism that protects processes in manner akin to
a network firewall for the system-call interface. Because the
Process Firewall only protects processes – rather than sand-
boxing them – it can examine their internal state to identify
the protection rules necessary to block many of these attacks
without the need for program modification or user configura-
tion. We built a prototype Process Firewall for Linux demon-
strating: (1) the prevention of several vulnerabilities, includ-
ing two that were previously-unknown; (2) that this defense
can be provided system-wide for less than 4% overhead in
a variety of macrobenchmarks; and (3) that it can also im-
prove program performance, shown by Apache handling 3-
8% more requests when program resource access checks are
replaced by Process Firewall rules. These results show that it
is practical for the operating system to protect processes by
preventing a variety of resource access attacks system-wide.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection—Access controls
General Terms Security
Keywords Resource Access Attacks, Protection
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1. Introduction
Programmers write their programs with expectations about
the system resources they will obtain from particular system
calls. For example, when writing a web server, programmers
may expect to restrict the files served to a particular sub-
tree in the filesystem (e.g., DocumentRoot in Apache), to
use only system-approved shared libraries, and to create new
files only the web server can access, even in shared directo-
ries (e.g., /tmp). However, adversaries have found several
methods to direct victims to resources chosen by the adver-
sary instead. We call these types of attacks resource access
attacks. As a group, resource access attacks are less common
than those based on memory errors (e.g., buffer overflows)
or web programming errors (e.g., cross-site scripting), but
they account for a steady stream of around 10% of reported
vulnerabilities in the CVE [13] database (Table 1).

As an example, consider a typical web server that serves
web content to authenticated users. Modern access control
limits processes to least privilege [36] permissions, based on
the functional requirements of the running program, but the
web server needs to access the files containing its web con-
tent and password files for authenticating users. However,
the program instructions that request these two sets of files
are distinct, so the web server should not access the pass-
word file when it expects to access web content or vice versa.
Adversaries can take advantage of flexibility in namespace
resolution, ambiguity in environment variables, and plain old
programmer errors to redirect the web server to violate such
requirements. Access control cannot prevent such attacks be-
cause it treats all of the web server’s system calls equally.

On the one hand, it was thought that these resource ac-
cess attacks could be prevented by better programmer prac-
tice and extended system-call APIs, but many vulnerabilities
remain, even in several cases when the programmers use the
extended APIs. Extended system-call APIs allow program-
mers to check the properties of files retrieved by pathnames,
but these checks do not block all adversary threats. For ex-
ample, Chari et al. [8] show that checks must be applied
to each pathname component to prevent link following at-
tacks, but lstat only checks whether the last component is
a link. Several other resource access attacks depend on sys-



Attack Class CWE class CVE Count

<2007 2007-12

Untrusted Search Path CWE-426 109 329
Untrusted Library Load CWE-426 97 91

File/IPC squat CWE-283 13 9
Directory Traversal CWE-22 1057 1514
PHP File Inclusion CWE-98 1112 1020

Link Following CWE-59 480 357
TOCTTOU Races CWE-362 17 14

Signal Races CWE-479 9 1

% Total CVEs - 12.40% 9.41%

Table 1: Resource access attack classes. For each attack class, we
show its Common Weakness Enumeration (CWE [14]) number,
and the number of reported vulnerabilities in the Common Vulner-
ability Exposure (CVE [13]) database.

tem knowledge for which no API exists. For example, a bug
in the Debian installer (BID 17288) led to Apache module
binaries being installed with insecure RUNPATH settings,
which allowed insecure library loading.

On the other hand, researchers have also shown that
system-only defenses to resource access attacks [5, 11, 17,
39] are limited [6, 17] or incur false positives because they
lack an understanding of the process’s internal state [7]. In
recent work, researchers propose using capabilities [27] to
control the access to resources per system call using infor-
mation flow control [26, 46]. However, the effectiveness of
such defenses again depends on programmers using capa-
bilities correctly, and it is often difficult or impossible to
express defenses in practice using information flow (e.g.,
Time-of-Check-to-Time-of-Use TOCTTOU races and sig-
nal races).

This paper presents the Process Firewall, a kernel secu-
rity mechanism designed to block resource access attacks
system-wide. The Process Firewall examines the processes’
internal state to enforce attack-specific invariants on each
system call. By enforcing invariants on each system call,
the Process Firewall provides attack-specific mediation that
is analogous to a network firewall [10] for the system-call
interface. Recall that prior to the introduction of network
firewalls, host processes were trusted to protect themselves
from network attackers. However, misconfigurations and
programmer errors led to the need for a layer of defense
to control hosts’ access to network resources. The network
firewall does not guarantee the security of hosts because
some risky network accesses may be allowed for functional
reasons, but the network firewall can block attacks by lim-
iting network access to approved processes and controlling
how connections are constructed. The Process Firewall pro-
vides similar defenses for the system call interface, limiting
the resources available to particular system calls based on
the process’s internal state. Using this approach, the Process
Firewall is a single mechanism that unifies defenses for a
variety of previously unrelated resource access attacks.

Because of differing goals and representations, the Pro-
cess Firewall is complementary to system-call interposition
mechanisms for sandboxing [21, 23, 34] and host intrusion

detection [18, 19, 37], as well as access control in general.
These mechanisms aim to confine malicious processes by
mediating any operations that they request. These mech-
anisms cannot utilize the process’s internal state, such as
its stack memory, because a malicious process could forge
such state to circumvent confinement. In contrast, the Pro-
cess Firewall only aims to protect benign processes from ac-
cessing resources that are not appropriate for their current
state. Thus, the Process Firewall is able to use internal pro-
cess state, in addition to detailed information about system
resources already available to it, to enforce attack-specific
invariants. If a process is actually malicious, it can only in-
validate its own protection. Thus, the Process Firewall is not
an alternative to system-call interposition mechanisms for
confinement, but instead protects processes by blocking ac-
cess to system resources that fail attack-specific invariants.

Designing the Process Firewall presents several chal-
lenges. First, we need a precise way to express the attack-
specific invariants for resource access attacks. We find that
a small number of resource and process attributes are suffi-
cient to implement strong defenses from such attacks. Sec-
ond, the low latency of the system-call interface demands
methods to check invariants efficiently. We carefully de-
sign the Process Firewall’s invariant checking mechanism
to avoid unnecessary processing time in extracting resource
and/or process information and to only process invariants
for attacks that are possible for each system call. Third, the
Process Firewall must be practical for use on system-wide
defenses. The Process Firewall supports both binary and in-
terpreted programs. Fourth, the Process Firewall must be
easy to use, requiring no program modification or additional
user configuration. We describe a variety of methods for OS
distributors to produce practical invariants in which they can
manage or eliminate false positives.

In our experiments, we show that several types of attacks
can be prevented, including two previously-unknown vul-
nerabilities. For example, we comprehensively defend the
Joomla! content management system from PHP File Include
attacks, and prevent a variety of Untrusted Library Load
attacks. We find that the Process Firewall incurs less than
4% overhead on a variety of macrobenchmarks. The perfor-
mance overhead on individual system-call processing varies
from <3% for system calls not dealing with resource ac-
cess to <11% for system calls that do. Surprisingly, the
Process Firewall can actually improve program performance
and security simultaneously, if program checks are replaced
by equivalent Process Firewall rules, as demonstrated by
Apache, which was able to handle 3-8% more requests.

The result of this work is the Process Firewall system
implemented for the Linux kernel, which includes: (1) a
firewall rule language for expressing attack-specific invari-
ants using attributes of processes and system resources; (2)
mostly-automated methods for installing optimized Process
Firewall rule bases; and (3) rule processing mechanisms spe-



Safe Unsafe Attack Process
Resource Resource Class Context
Adversary Adversary Untrusted Search

Inaccessible Accessible File/IPC Squat Entrypoint
(High Integrity, (Low Integrity, Untrusted Library
High Secrecy) Low Secrecy) PHP File Inclusion

Adversary Adversary Link Following
Accessible Inaccessible Directory Traversal Entrypoint

(Low Integrity, (High Integrity,
Low Secrecy) High Secrecy)
Same as prev. Diff. from prev. TOCTTOU Entrypoint +
“check”/“use” “check”/“use” Races System-Call Trace

No signal Adversary Non-reentrant System-Call Trace +
(Blocked) delivers signal Signal Handlers In Signal Handler

Table 2: Resource access attacks are caused by adversaries forc-
ing victim processes to access unsafe resources instead of safe
resources. Also shown is necessary process context to determine
when these attacks apply (see Section 4).

cialized for system calls. Experiments show that the Pro-
cess Firewall can be deployed with no user input or program
changes to prevent a variety of attacks system-wide with a
low likelihood of false positives.

2. Problem Definition
Processes require many system resources in order to func-
tion effectively. Resources may be delivered to processes
either synchronously (e.g., files in response to open) or
asynchronously (e.g., signals in response to sigaction).
In either case, adversaries have several means for exploit-
ing flaws when processes retrieve resources. Table 2 shows
some resource access attacks, which occur when adversaries
direct victim processes to resources chosen by the adversary.
Columns 1 and 2 in Table 2 show the properties of the safe
resource expected by the victim and the properties of un-
safe resources to which adversaries direct victims for these
resource access attacks.

In general, there are two ways by which adversaries can
realize such attacks. First, an adversary can control how re-
sources are retrieved directly. For example, when a victim
program wants to read from a file in /tmp, the adversary
who has write access to /tmp can create a symbolic link
to /etc/passwd. If the victim does not detect that the tar-
get of the symbolic link is a high-secrecy file, the victim
may end up accessing and possibly leaking the high-secrecy
password file, when it meant to access a low-secrecy tempo-
rary file. Second, the adversary can indirectly control the re-
source accessed by tricking the victim process into request-
ing a resource specified by the adversary. For example, in
a Directory Traversal attack [15], an adversary may request
the file ../../etc/passwd from a webserver. If the web-
server does not properly filter the untrusted input or validate
the retrieved resource, it could again end up accessing the
high-secrecy password file when it meant to access a low-
secrecy user web page.

An important characteristic of resource access attacks is
that a resource that is unsafe for a particular victim context
is safe for some other victim context. In the above example,
the webserver can access /etc/passwd legitimately when

/* fail if file is a symbolic link */
    int open_no_symlink(char *fname)
    {
01  struct stat lbuf, buf;  
02 int fd = 0;  
03  lstat(fname, &lbuf);
04  if (S_ISLNK(lbuf.st_mode))
05    error("File is a symbolic link!");
06  fd = open(fname); 
07  fstat(fd, &buf);
08  if ((buf.st_dev != lbuf.st_dev) ||
09       (buf.st_ino != lbuf.st_ino))
10    error("Race detected!");
11  lstat(fname, &lbuf); 
12  if ((buf.st_dev != lbuf.st_dev) ||
13       (buf.st_ino != lbuf.st_ino))
14    error("Cryogenic sleep race!");
15  return fd; 
    }

/* ignore malicious env var  */

    int load_library()
    {
01  if ((uid != euid) || (gid != egid)) {
02    /* SUID binary */
03    unsetenv("LD_LIBRARY_PATH"); 
04    unsetenv("LD_PRELOAD"); 
05  }
06  path = build_search_path(); 
07  foreach path p {
08     fd = open(p/lib); 
09     if (fd != -1) {
10        mmap(fd); 
11        break; 
         } 
      } 
    }

(a) Symbolic link check (b) Library search path check

Figure 1: Program code to defend against resource access attacks.

it wants to authenticate clients. However, it should not do so
when serving a user web page. As a result, traditional access
control is insufficient to prevent resource access attacks,
because it assigns permissions to processes as a whole, not
distinguishing between what is safe or unsafe for different
victim context.

2.1 Challenges in Preventing Resource Access Attacks
Figure 1 shows sample program code that aims to prevent
resource access attacks to highlight the challenges. To pre-
vent these attacks, victim programs either: (1) retrieve and
check resource properties (first example) or (2) restrict the
name used to retrieve the resource (second example).

Link Traversal and TOCTTOU Races. Figure 1(a)
shows code from a program trying to defend itself against
symbolic link attacks. On line 3, an lstat checks if the file
is a symbolic link. If not, on line 6, the file is opened to
read using the open system call. However, there is a race
condition possible between lines 3 and 6. A TOCTTOU at-
tack [5, 28] can be successful if the adversary forces the
victim to “use” a different file on line 6 than its previous
“check” on line 3. Row 3, Columns 1 and 2 in Table 2 show
that an unsafe resource for a successful TOCTTOU attack is
different from the previous corresponding “check” or “use”
call, whereas the safe resource that protects against the at-
tack is the same as the corresponding call. An adversary
scheduled by the OS to run after line 3 but before line 6
could change the file to a symbolic link. To defend against
this, an fstat is performed on line 7, and the inode and
device numbers that uniquely identify a file on a device are
compared to the lstat to make sure the file checked is the
one opened on lines 8 and 9. However, even this is insuffi-
cient. Olaf Kirch [12] showed a “cryogenic sleep” attack, in
which an adversary could put a setuid process to sleep be-
fore line 6 but after line 3, and wait for the inode numbers to
recycle, thus passing the checks on lines 8 and 9. To defend
this, an additional lstat is done on line 11, and the in-
ode and device numbers compared again. So long as the file
remains open, the same inode number cannot be recycled.
Finally, Chari et al. [8] showed that such similar checks



must be done for each pathname component, not only the
final resource, and proposed a generalized safe_open func-
tion that allows following of links so long as the link points
to an adversary’s own files and not the victim’s files. Un-
fortunately, safe_open is used by few programs currently
(Postfix uses a weaker version) and has false negatives1.

Untrusted Search Path. Figure 1(b) shows simplified
code from ld.so when it loads a library. An adversary, when
launching a setuid program, may supply malicious path
values for the LD_LIBRARY_PATH environment variables,
forcing a victim program to use untrusted libraries. In this
example, an untrusted library load resource attack succeeds
if the adversary forces the victim to access a low-integrity
resource on line 8 where the victim program was expecting
a high-integrity resource (as shown in Columns 1 and 2
of row 1 in Table 2). To prevent this, ld.so unsets such
environment variables on lines 3 and 4, builds a search path
on line 6, opens the library file on line 8, and maps it into the
process address space on line 10. Unfortunately, there are a
variety of other ways that adversaries can control names in
search paths apart from environment variables – RUNPATHs
in binaries, programmer bugs, and even dynamic linker bugs
(e.g., CVE-2011-0536, CVE-2011-1658, Payer et al. [33]).
It is difficult for programmers to anticipate and restrict all
sources of adversarial names for library search paths. For
example, a bug in the Debian installer (CVE-2006-1564)
led to Apache module binaries being installed with insecure
RUNPATH settings, which allowed insecure library loading.

2.2 Limitations of Prior Defenses
Prior defenses can be divided into two broad categories:
(1) system-only defenses and (2) program defenses. First,
system-only defenses require no program modifications
and are deployed either as libraries or in-kernel defenses.
System-only defenses have been proposed for TOCTTOU [5,
11, 17, 39, 44] and link following [8] attacks. However,
system-only defenses in general are fundamentally limited
because they do not take into account process context. Pro-
cess context captures the process’s intent and therefore the
set of valid resources for the process’s particular system call.
For example, Cai et al. [7] proved that without this process
context, all system-only TOCTTOU defenses are prone to
false positives or negatives.

On the other hand, while program code defenses can limit
resource access per system call depending on process con-
text, programs lack sufficient visibility into the system to
defend against resource access attacks. Since resources are
managed outside the program in OS namespaces, programs
need to query the OS to ensure that they access the correct
resource. However, there are several difficulties in doing so.
First, such program checks are complicated under the cur-
rent system-call API. As one example, the system-call API

1 In safe open, an adversary A can trick V into accessing another victim B’s
files through A’s symbolic links

that programs use for resource access is not atomic, leading
to TOCTTOU races. There is no known race-free method
to perform an access-open check in the current system
call API [7]. As another example, Chari et al. [8] show that
to defend link following attacks, programmers should per-
form at least four additional system calls per path compo-
nent for each resource access. Second, as a consequence
of requiring additional system calls, program defenses are
also inefficient. For example, the Apache webserver doc-
umentation [2] recommends switching off resource access
checks during web page file retrieval to improve perfor-
mance. Thirdly, program checks are incomplete, because
adversary accessibility2 to resources is not sufficiently ex-
posed to programs by the system-call API. The first two
rows of Table 2 show that adversary accessibility is nec-
essary to identify unsafe resources for some attacks. Cur-
rently, programs can query adversary accessibility for only
UNIX discretionary access control (DAC) policies (e.g., us-
ing the access system call), but many UNIX systems now
also enforce mandatory access control (MAC) policies (e.g.,
SELinux [31] and AppArmor [30]) that allow different ad-
versary accessibility. Finally, many programmers are un-
aware of resource access attacks and fail to add checks alto-
gether. All these factors have led to resource access attacks
making up around 10% of CVE entries (Table 1).

Program defenses such as privilege separation [35] and
namespace isolation (using chroot), capability systems [27,
43], and information flow systems [26, 46] enable cus-
tomized permission enforcement per system call. However,
such solutions are manually intensive because programmers
must tailor their programs to block resource access attacks.
More importantly, these solutions are not portable because
different deployments may have different adversary acces-
sibility (determined by the access control policy), therefore
having the impractical requirement of rewriting programs
for each distinct system deployment to provide effective
protection. In addition, some of these defenses do not ad-
dress temporal properties of processes, necessary to block
TOCTTOU and signal races. Lastly, privilege separation that
uses the current system-call API inherits challenges of inef-
ficiency [29] and complexity.

In this work, we want to develop a mechanism that pro-
tects each system call from resource access attacks. Noting
the incompleteness, complexity, and inefficiency of program
code checks, our solution has the following goals: (1) must
be capable of preventing instances of the resource access at-
tacks in Table 2; (2) must require no programmer or user
effort to be deployed; (3) must be possible to configure use-

2 A resource is adversary accessible if the OS access control policy grants
an adversary of the current process permissions to the resource. In UNIX
discretionary access control (DAC), an adversary is a user with a different
UID (except root). A similar approach can be applied to calculate adver-
saries for other security models, such as SELinux mandatory access control
(MAC) [40]. Write permissions to the resource lead to integrity attacks and
read permissions to secrecy attacks.
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ful policies that do not introduce false positives; and (4) must
be more efficient than program-based defenses. That is, the
Process Firewall must be an efficient and easy-to-use mech-
anism that prevents many resource access attacks without
blocking valid function.

3. Solution Overview
Our solution is based on the insight that past defenses have
been incomplete in stopping resource access attacks because
they did not simultaneously consider both the program re-
quest’s particular requirements and system knowledge about
adversary access to protect processes during resource ac-
cess. While system-only defenses do not consider the con-
text of a program’s particular request, program defenses do
not have the system knowledge of adversary accessibility to
resources. In this work, we propose a system-based solution,
the Process Firewall, to protect programs against resource
access attacks by augmenting the system’s knowledge about
adversary access with process context.

Our solution augments the OS kernel’s authorization
mechanism to account for the current process context and
accessed resource context, such as adversary accessibility,
as shown in Figure 2. First, during a setup phase (Step 0
in Figure 2), invariant rules (simply, invariants) are defined
for attack types in Table 2 to form an invariant database.
These invariants describe the preconditions, in terms of the
process and resource contexts, under which a particular type
of resource access attack is possible. While any process and
resource context may be applied to an invariant in general,
Table 2 shows that only a few of these (as explained in Sec-
tion 4.2) are sufficient to block many resource access attacks.
During runtime, when a process makes a system call, the OS
authorization mechanism, a reference monitor [3], decides
whether a subject responsible for the system call (e.g., the
process) can perform the requested operations on the speci-
fied object (e.g., the resource) (Step 1 in Figure 2) using its
access control policy. If the authorization mechanism allows
a process access to the requested resource, the Process Fire-
wall is invoked to block the resource access if it would result
in any resource access attack (Step 2 in Figure 2). Step 3 of
Figure 2 fetches invariants from the invariant database. Re-

source and process context to evaluate invariants is fetched
using context modules (Step 4 in Figure 2). If the invariant
precondition matches, the Process Firewall implements the
specified action. In general, invariants are deny rules, where
the default action is to allow the resource access (i.e., be-
cause no resource access attack was found to be possible in
that process context for the target resource).

As an example, consider a setuid root binary vulner-
able to an untrusted library search path attack (Figure 1(b)).
Suppose the dynamic linker ld.so makes a system call on
line 8 to load an adversary-accessible library. Since root

processes are authorized to access any file, the authorization
mechanism allows the process access to the library. The Pro-
cess Firewall is then invoked (Step 2 in Figure 2). The Pro-
cess Firewall fetches invariants from the invariant database
(Step 3 in Figure 2). Assume that one invariant blocks
the open system call in line 8 of ld.so from accessing
adversary-accessible resources. To evaluate this invariant,
context modules are invoked (Step 4 in Figure 2) to retrieve
required process context (e.g., the process’s user stack and
the mapping of the file ld.so in the process) and resource
context (e.g., that the resource is adversary-accessible) us-
ing the applicable context modules for the invariant’s pre-
conditions. In this case, the Process Firewall finds that the
invariant precondition matches and thus blocks the resource
access (Step 5 in Figure 2).

We identify a key difference between our goals and those
of access control and host intrusion detection systems (ID-
Ses) [18, 19, 37] that enable the deployment of such de-
fenses in the kernel. Preventing resource access attacks only
requires that we protect the process from unsafe resources.
For both access control and host IDS systems, the goal is
to confine a potentially malicious process, so they cannot
act on any process context for fear of it being spoofed by
the adversary. For example, host IDSes model the expected
behavior of programs and compare the externally-visible be-
havior (e.g., process’s system calls) to these models to detect
intrusions. Unfortunately, they cannot trust any of the pro-
cess’s internal state because malicious processes can mimic
a legitimate program [42]. In contrast, a malicious process
that mimics another program to our system only affects its
own protection, and access control still confines its opera-
tion. Section 4.4 describes how our mechanism protects it-
self from malicious or misbehaving processes during mem-
ory introspection.

4. Design
In this section, we describe the steps shown in Figure 2.

4.1 Defining Attack-Specific Invariants
To start (Step 0), we need to define what an attack-specific
invariant is. These invariants define: (1) a resource context,
which describes the properties of a resource that may indi-
cate a resource access attack is in progress, (2) a process con-



text, which describes the properties of a process that would
be vulnerable to the corresponding resource access attack
implied by the resource context, and (3) an authorization de-
cision to take when context matches (allow or block access).
In Step 0 of Figure 2, known attacks, of the types summa-
rized in Table 2, are translated into a database of attack-
specific invariants. Invariants for attack types are either man-
ually defined once across all deployments, or automatically
generated for the specific deployment (Section 6.3). The
challenge in this section is to define the format of the in-
variants necessary to prevent all these types of attacks. We
find very few types of contextual information are necessary
to express the necessary invariants for our current resource
access attack classes: two for resource contexts and three for
process contexts (Table 2).

Below, we define a Process Firewall attack-specific in-
variant as a function. Since Process Firewall attack-specific
invariants augment access control, we will start with access
control. An access control function takes as input subject la-
bel, an object label, and an operation, and returns whether
access is allowed or denied.

authorize(subject, object, op) 7→ Y|N

In contrast, a Process Firewall attack-specific invariant
for preventing resource-access attacks augments the conven-
tional authorization function by making decisions also de-
pend on process and resource context:

pf invariant(subject, entrypoint, syscall trace,
object, resource id,adversary access, op) 7→ Y|N

Attacks are caused when an unsafe resource is returned
instead of the safe resource for a particular process context.
Column 2 in Table 2 shows that the required resource con-
text to identify unsafe and safe resources are the resource
identifier and adversary accessibility. Column 4 in Table 2
shows that the required process context is the program en-
trypoint and/or prior system calls executed by the process.
Thus, to detect whether an invariant applies we may need to
identify the program entrypoint and/or some part of the sys-
tem call trace. Hence, in this case, a subject, entrypoint , and
syscall trace identify the process context for detecting re-
source access attacks. An entrypoint is the program counter
of a function call instruction on the process’s call stack. For
examples in Section 2.1, it can be thought of as identifying
the line number of the function call in the program.

We use pf invariant to block unsafe resources rather
than allowing safe resources. This follows from our design
decision to prevent false positives, at the cost of possibly
allowing false negatives. By definition of the attack-specific
invariants, any unsafe resource enables an exploit; therefore,
there can be no false positives.

4.2 Checking Invariants
In Step 3, the Process Firewall’s main function is retrieving
process and resource contexts, and checking them against

the invariants to verify that the resource request is not an at-
tack. A naı̈ve design simply fetches all process and resource
contexts and then matches them against each invariant. Since
context retrieval incurs overhead, we want to retrieve them
only when necessary. Firstly, to prevent unnecessary con-
text collection, we lazily retrieve context values. Secondly,
to preserve and reuse gathered context as long as it is valid,
we support module-specific caching.

Lazy context retrieval gathers context only when it is
needed by an invariant. The Process Firewall associates each
context field with a bit in a context bit mask that shows
which context field values have already been collected. To
enable modular context retrieval, we designed context mod-
ules. Each context module retrieves one context field value.
When evaluating an invariant, the rule matching mechanism
checks if all necessary context field bits are set. If not, it trig-
gers the associated context module.

Computed context field values themselves are then cached
for reuse. Once we have obtained and stored a context value,
this value may apply across other rules and even across mul-
tiple invocations of the Process Firewall. For example, the
process call stack used to find program entrypoints is valid
throughout a single system call, but multiple resource re-
quests may be made (e.g., in pathname resolution). Context
modules must support an API to check whether to invalidate
their context at the beginning or end of rule processing.

4.3 Finding Applicable Invariants
As the size of our invariant database grows, sequential eval-
uation becomes impractical. Several systems, such as Win-
dows access control lists and network firewalls sequentially
scan rules until a match is found, leading to long authoriza-
tion times for large rule sets. To combat this problem, net-
work firewalls provide facilities to organize rules into chains,
enabling only applicable rules to be run. The problem is such
chains are usually manually configured in network firewalls.

To solve the problem of sequential rule traversal and man-
ual configuration, we automatically create chains for en-
trypoints. Because nearly all our invariants are associated
with a specific entrypoint, we organize our invariants into
entrypoint-specific chains and traverse the chain specific to
an entrypoint. Thus, the Process Firewall determines the en-
trypoint associated with this resource request and traverses
only that chain. Rules that do not involve entrypoints are
matched before jumping to entrypoint-specific chains.

This simple traversal arrangement is possible because we
have only deny rules (Section 4.1) followed by a default
allow rule. If we had both deny and allow rules, then the
order of traversal of rules would be important, and rule
organization also would also become more complicated as
in network firewalls.

4.4 Retrieving Entrypoint Context
In Step 4, we run the context modules necessary for the cur-
rent invariant being checked, as described in Section 4.2. The



only context values that need to be retrieved from the pro-
cesses’ internal states are the entrypoint contexts. The Pro-
cess Firewall is designed to protect processes from resource
access attacks system-wide, so we need to be able to retrieve
entrypoint contexts from multiple types of programs being
run on the system. In this section, we explore how to safely
retrieve entrypoint contexts for different types of programs.

Our entrypoint context modules should handle both bi-
nary and interpreted programs. For binaries, the challenge
is to reason correctly about compiler optimizations, such as
tail-call elimination, and compile-time options, such as those
that remove frame-pointer information. In these cases, we
can still retrieve the call stack if debug or exception handler
information is available (e.g., Ubuntu by default compiles all
programs with exception handler information). In case such
information is unavailable, we fall back to producing a stack
trace using function prologue information (e.g., as used by
GDB). For interpreted programs3, we adapt the backtrace
code from the interpreter to run in the kernel. This is only
a small amount of code, ranging from 11 lines for PHP to
59 lines for Bash. We have not found any programs in the
Ubuntu 10.04 desktop distribution or LAMP stack for which
the call stack is not retrieved correctly by these methods.

Since context modules obtain data from potentially ma-
licious processes, they need to perform careful input san-
itization to avoid arbitrary kernel compromise through in-
valid pointer dereferences or denial-of-service (DoS) attacks
such as unwinding infinite call stacks. Our entrypoint con-
text prevents invalid pointer dereferences by using the ker-
nel’s copy_from_user function. Further, to prevent DoS at-
tacks, it sets an upper limit on the number of stack frames.
These techniques ensure the Process Firewall aborts evalua-
tion of malformed context without itself exiting or function-
ing incorrectly. As a result, an applicable rule may mistak-
enly not match for a malicious process, but this only affects
the malicious process’s protection.

5. Implementation
We have implemented versions of the Process Firewall for
Linux kernel versions 2.6.35 and 3.2.0. We find that the
Process Firewall performs a service similar to a network
firewall. The Process Firewall controls access to specific re-
sources (e.g., by resource identifier) or groups of resources
(e.g., by label) by specific ports (e.g., entrypoints) in a state-
ful way (e.g., system-call traces). As a result, we construct
the Process Firewall by adapting the iptables firewall
mechanism. The main benefit we derive from the iptables
architecture is the extensibility of the rule language and
modules to new attacks, just as iptables is extensible to
new protocols. Thus, we can extend the system-call API
modularly to arbitrary process and resource contexts and
new attacks without affecting core kernel code.

3 We support the Bash, PHP, and Python languages thusfar.
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Figure 3: The Process Firewall implementation: Shaded elements
are specially developed for Process Firewall rule installation and
processing. Unshaded elements in the Process Firewall proper are
standard firewall components.

Adding code to the kernel increases the TCB and also
raises questions of maintainability. The Process Firewall core
consists of 1102 LOC (501 LOC for rule traversal and
matching, 378 LOC for validating and setting up rules
pushed in from userspace into chains, and 223 LOC for
initialization and module registration) with 2451 LOC for
modules (dominated by the entrypoint context module with
1735 LOC). Bugs in interaction with userspace (validating
rules and fetching entrypoints) may cause kernel compro-
mise. However, the core code (including rule validation) is
mostly borrowed from the mature iptables, and the en-
trypoint context module (modified from a proposed kernel
patch [32]) carefully handles interactions with potentially
malicious userspace as described in Section 4.4. Thus, we
believe the increase in TCB is acceptable. Finally, since
Process Firewall code is divorced from the mainline ker-
nel code, it is easily maintainable. Porting from the Linux
2.6.35 to Linux 3.2.0 kernel required minimal effort.

5.1 Process Firewall Rule Processing Loop
Figure 3 shows an overview of the Process Firewall sys-
tem, where the components added for the Process Fire-
wall are shaded. When a user-level process submits a sys-
tem call request, the kernel’s existing authorization system
(e.g., SELinux [31] over the Linux Security Modules inter-
face [45]) uses the host’s access control policy to authorize
the set of security-sensitive operations resulting from each
system call. If an operation is authorized, the Process Fire-



wall is then invoked through a PF hook to further determine
whether the resource is appropriate for that particular pro-
cess context based on the specified invariants. These invari-
ants are stated in terms of firewall-style rules stored in the
PF Rule Base. We use LSM for the Process Firewall rather
than build on system-call interposition techniques [21, 34]
as LSM has no race conditions [20] and has been analyzed
for complete mediation to resources [25, 47].

Once invoked, the Process Firewall starts processing the
first rule in the rule base. A rule matches a “packet” if all its
classifiers (Table 3) match values in the “packet.” A rule can
contain several classifiers, and user-defined classifiers can
be added through extensible match modules, similar to how
iptables extensibly handles network protocols.

In a network firewall, the packet to match is readily avail-
able. The Process Firewall constructs its “packet” by fetch-
ing information required by match modules from the process
and resource through context modules. Context collected is
recorded using a bitmask. If a rule matches, target modules
are invoked, which either produce a decision to be returned
to the authorization system, ask to continue processing the
next rule, or jump to a new chain of rules. This is again
similar to iptables, where different target modules (called
jumps) can accept or drop packets. If a rule is not matched,
processing continues on the next rule.

Those wishing to write new match and target mod-
ules must write both a userspace part that handles rule-
language extensions, and a kernel handler function, similar
to iptables. For the Process Firewall, module writers also
have to implement the necessary context modules to obtain
required context for their match and target modules.

One critical issue is that iptables is not re-entrant –
it saves the stack of chain traversals of a packet with a
table. Thus, any re-entry invalidates this stack. To defend
against this, iptables turns off kernel pre-emption and in-
terrupts. However, we noticed that disabling interrupts on
each resource request, perhaps several times per system
call, has a noticeable impact on system interactivity. Fur-
ther, we found that such disabling also leads to overhead in
the performance-critical main loop.

To solve this issue, we designed the Process Firewall to
run with interrupts enabled. Instead of saving the stack
of rule traversals with the table, as iptables does, we
instead maintain a per-process rule state, by extending
struct task_struct. The process can thus be safely
scheduled out during rule-base traversal.

5.2 Process Firewall Rule Language
Table 3 shows the rule language of the Process Firewall. This
is analogous to iptables. There are statements that iden-
tify the entire firewall (pftables), tables, and chains (de-
scribed above). Individual rules have the same structure as an
iptables rule, consisting of default matches (def match),
custom matches (match), and targets. However, these rule
elements are specific to the Process Firewall, representing

Rule Language
pftables [-t table] [-I|-D] chain rule_spec
table : [filter | mangle]
chain : [input | output]
rule_spec : [def_match] [list of match] [target]
match : -m match_mod_name [match_mod_options]
target : -j target_mod_name [target_mod_options]
def_match : -s process_label -d object_label

: -i entry_point -o lsm_operation -p program

Example Rule
* Disallow following links in temp filesystems.
pftables -t filter -o LNK_FILE_READ -d tmp_t -j DROP

Table 3: Process Firewall rule language with an example.

the difference between the network firewall concepts and
those used in the Process Firewall. For example, default
matches specify the five context values: (1) process label;
(2) resource label4; (3) resource identifier (signal or inode
number); (4) program binary; and (5) entrypoint (program
and entry point). Entrypoint program counters are spec-
ified relative to program binary base, handling ASLR code
randomization. The special keyword SYSHIGH denotes the
set of all trusted computing base (TCB) subjects (for -s) or
objects (for -d) for SELinux [24, 40]. Match and target mod-
ules in a rule can refer to a context in their arguments (e.g.,
C INO for inode number); this is replaced by the actual con-
text value at runtime.

We have developed several match, target and context
modules to handle the resource access attacks in Table 2. The
STATE match and target modules allow matching and set-
ting arbitrary key-value pairs in a process-specific (in Linux,
also thread-specific) dictionary, implemented by extending
the struct task struct. This stores, for example, the
resource identifier (inode number) accessed in previous sys-
tem calls to defend TOCTTOU attacks, and if the process is
currently handling a signal, to defend signal races. The LOG

target module logs a variety of information about the current
resource access in JSON format.

The Process Firewall rules are inserted into the kernel by
the pftables user-space process. The PF rule setup module
translates input rules into an enforceable form and organizes
them for efficient access in the PF rule base. Each chain in
the Process Firewall has rules that block unsafe resources
(-j DROP) followed by a default allow policy (-j ACCEPT).
In addition, it translates filenames into inode numbers and
SELinux security labels into security IDs for fast matching.

6. Evaluation
In this section, we examine the Process Firewall’s ability
to block exploits, methods to generate rules for the Process
Firewall in a manner that does not produce false positives,
and Process Firewall performance.

4 The SELinux MAC system assigns labels to processes (subject labels)
and resources (object labels). For example, the process sshd has the label
sshd t while the file /etc/shadow has the label shadow t. In SELinux,
the relevant part of all subject and object labels are called types. The t

denotes a type.



# Program Reference Class

E1 Apache CVE-2006-1564 Untrusted Library
E2 dstat CVE-2009-4081 Untrusted Search Path
E3 libdbus CVE-2012-3524 Untrusted Search Path
E4 Joomla! gCalendar CVE-2010-0972 PHP File Inclusion
E5 openssh CVE-2006-5051 Signal Handler Race
E6 dbus-daemon Unpatched TOCTTOU
E7 java Unpatched Untrusted Search Path
E8 Icecat Unknown Untrusted Library
E9 init script Unknown Link following

Table 4: The exploits tested against the Process Firewall.

6.1 Security Evaluation
To evaluate the effectiveness of the Process Firewall in
blocking resource access attacks, we deployed it on an
Ubuntu 10.04 distribution and tried to exploit resource ac-
cess attacks against programs. We tested 9 exploits shown
in Table 4 that are representative instances of many resource
access exploits. Four exploits (E1-E4) were chosen to check
effectiveness of four rules that were automatically suggested
by our rule suggestion procedure (Section 6.3). Note that
these rules were suggested with no knowledge of the exploits
we tested them against. E5 tested the manually-inserted,
non-reentrant signal handler rules (R8-R11). E6, E7 were
chosen to check effectiveness of rules that were automat-
ically generated from known vulnerabilities, to externally
protect unpatched programs. E8, E9 were new vulnerabil-
ities automatically blocked by the Process Firewall itself.
We verified that all exploits were successful when the Pro-
cess Firewall was disabled. When enabled, the Process Fire-
wall successfully blocked these resource access attacks.

6.1.1 Common Vulnerabilities
E1: Apache. CVE-2006-1564 is an untrusted library load
vulnerability based on an insecure RUNPATH discussed in
Section 2.1. To simulate this condition, we manually set
RPATH to the insecure value. Rule R1 blocked this attack, as
the SELinux label of /tmp/svn (tmp_t) was not in the set of
valid labels for the ld.so entrypoint that opens library files.
Section 2.1 listed many other reasons for untrusted library
search paths – all are blocked by the single rule R1.

E2: dstat. dstat is a Python script that outputs a variety
of performance statistics. It had an untrusted module search
path (Python os.path) that included the working directory,
enabling adversaries to plant a Trojan horse Python mod-
ule. Rule R2 constrains Python scripts to load only trusted
Python scripts labeled usr_t, lib_t, corresponding to
/usr/lib/ and /usr/share directories, which blocked
this attack. Python programmers are often the cause for such
bugs, but other reasons exist – in 2008, the Python interpreter
itself set insecure search paths (CVE-2008-5983), affecting
a variety of scripts. All such attacks are blocked by R2.

E3: libdbus. D-Bus is a message bus system that vari-
ous applications use to communicate. Clients use libdbus

to talk to the D-Bus server socket. However, libdbus pro-

grammers did not expect to be called from setuid binaries,
so they did not filter an environment variable that specifies
the path of the D-Bus system-wide socket. This is a typical
example of programmer assumptions not being met by sys-
tem deployment, leading to a resource access attack. Rule
R3 restricts the entrypoint in libdbus to connect to only the
trusted message bus labeled system_dbusd_var_run_t

(in directory /var/run/dbus) for high-integrity processes,
thus blocking the attack for all vulnerable setuid programs.

E4: PHP scripts. PHP local file inclusion (LFI) is a
widespread attack caused by improper input filtering in
PHP scripts, causing the PHP interpreter to load attacker-
specified untrusted code. We setup Joomla!, a popular con-
tent management system written in PHP. A large number
of third-party modules have been written for Joomla!, many
improperly filtering input filenames, enabling the adversary
to launch PHP LFI attacks (e.g., 82 CVEs in 2010 alone).
Rule R4 restricts the instruction including files in the PHP
interpreter to only open those of appropriate SELinux labels
(httpd_user_script_exec_t by default on Ubuntu). We
tested that an attack on the gCalendar component (Table 4)
was blocked, but R4 should block all such attacks.

Openssh (E5) has a non-reentrant signal handler vulnera-
bility that can be blocked using one set of system-wide rules
(R9-R12). D-Bus (E6) and the Java compiler (E7) had un-
patched vulnerabilities (E7 was known for at least two years
but still unpatched). Rules R5, R6 in Table 5 block E6, and
rule R7 blocks E7. The Process Firewall rules thus perform
a function similar to dynamic binary patching [9].

6.1.2 New Vulnerabilities Found
E8: GNU icecat. One of the machines on which we installed
the Process Firewall had the GNU Icecat browser. This had
an insecure environment variable that caused it to search
for libraries in the current working directory. The Process
Firewall silently blocked this attack (rule R1); we noticed it
later in our denial logs. We reported it to the maintainer who
accepted our patch.

E9: init script. When examining accesses matching our
safe_open rules (that we apply system-wide), we found one
Ubuntu init script that unsafely created a file. The bug was
accepted by Ubuntu and assigned a CVE.

6.2 Process Firewall Performance
We examine here the performance impact of the Process
Firewall in two ways: (1) comparing the performance impact
of blocking resource access attacks in the program vs. the
Process Firewall and (2) the performance overhead of the
Process Firewall relative to an unprotected system. First,
we found that enforcing strong defenses against resource
access attacks in the Process Firewall could be done much
more efficiently in the Process Firewall than in programs.
Second, we found that the Process Firewall including over
1000 rules incurs no more than a 4% overhead over a variety



Rule suggestions from runtime analysis

Only allow loading trusted library files by the dynamic linker.
R1: pftables -p /lib/ld-2.15.so -i 0x596b -s SYSHIGH -d ~{lib_t|textrel_shlib_t|httpd_modules_t} -o FILE_OPEN -j DROP
Load only trusted python modules.
R2: pftables -p /usr/bin/python2.7 -i 0x34f05 -s SYSHIGH -d ~{lib_t|usr_t} -o FILE_OPEN -j DROP
Allow the D-Bus library to connect only to trusted D-Bus server socket.
R3: pftables -p /lib/libdbus-1.so.3 -i 0x39231 -s SYSHIGH -d ~{system_dbusd_var_run_t} -o UNIX_STREAM_SOCKET_CONNECT -j DROP
Only include properly labeled PHP files (prevent local file inclusion attacks).
R4: pftables -p /usr/bin/php5 -i 0x27ad2c -s SYSHIGH -d ~{httpd_user_script_exec_t} -o FILE_OPEN -j DROP

Rule generation from known vulnerabilities

Protect D-Bus against a known vulnerability.
On bind, record the inode number created (using the STATE target module).
R5: pftables -i 0x3c750 -p /bin/dbus-daemon -o SOCKET_BIND -j STATE --set --key 0xbeef --value C_INO
On chmod, block if same inode is not used (using the STATE match module).
R6: pftables -i 0x3c786 -p /bin/dbus-daemon -o SOCKET_SETATTR -m STATE --key 0xbeef --cmp C_INO --nequal -j DROP
Disallow java from loading untrusted configuration files.
R7: pftables -i 0x5d7e -p /usr/bin/java -d ~{SYSHIGH} -o FILE_OPEN -j DROP

Manually-specified rules

Rule equivalent to SymLinksIfOwnerMatch Apache Configuration Option
On traversing symbolic links, check that link target owner is the same as the link owner of the link. Use COMPARE match module to compare.
C TGT OWNER is set by a context module that fetches details of symbolic link targets.
R8. pftables -i 0x2d637 -p /usr/bin/apache2 -o LINK_READ -m COMPARE --v1 C_DAC_OWNER --v2 C_TGT_DAC_OWNER --nequal -j DROP
Signal handler races
Main chain: Jump to signal chain if a signal is to be delivered to a process.
R9: pftables -I input -o PROCESS_SIGNAL_DELIVERY -j SIGNAL_CHAIN
If process is already executing a signal handler and signal to be delivered has a handler and is not unblockable (match module SIGNAL MATCH), drop (possible race).
R10: pftables -I signal_chain -m SIGNAL_MATCH -m STATE --key ’sig’ --cmp 1 -j DROP
Else, record that we are entering a signal handler in our state.
R11: pftables -I signal_chain -m SIGNAL_MATCH -j STATE --set --key ’sig’ --value 1
When we return from a signal handler (sigreturn syscall), change state to indicate we are no longer in a handler.
R12: pftables -I syscallbegin -m SYSCALL_ARGS --arg 0 --equal NR_sigreturn -j STATE --set --key ’sig’ --value 0

Attack-specific rule templates (Fields in angle brackets are filled to generate rules)

T1: Restrict entrypoint to access only a set of resources
Explicitly identify each entry point of low-integrity data
pftables -I input -i <ept> -p <prog> -d ~<resource_set> -o <op> -j DROP
T2: Defend TOCTTOU race conditions
Record resource accessed in check call
pftables -I create/input -i <check_ept> -p <prog> -o <op> -j STATE --set --key <use_ept> --value C_INO
On use call, if different resource accessed, drop
pftables -i <use_ept> -b <binary> -o <op> -m STATE --key <use_ept> --cmp C_INO --nequal -j DROP

Table 5: Process Firewall rules discussed in text (R1 - R11) and templates used to generate rules (T1, T2).
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Figure 4: Comparing performance of link following checks in pro-
gram or as Process Firewall rules as a function of path length n.

of macrobenchmarks and less than 11% overhead on any one
system call.

System Call Performance. Figure 4 shows the per-
formance of four variants of the open system call as a
function of path length that provide differing protections
against link following attacks. The average path length for
our system was 2.3. The baseline open does not perform
any checks. open_nofollow uses the O NOFOLLOW flag,
which prevents such attacks, but is non-portable and may
also block desirable uses of symbolic links. open_nolink

opens a file if it is not a link, by the sequence lstat-open.
open_race eliminates the race between lstat and open

by performing an additional fstat after opening the file.
Lastly, safe_open performs such checks for each path
component and is necessary to completely prevent link
following attacks [8]. safe_open_PF is the equivalent
of safe_open implemented using Process Firewall rules.
While safe_open had overheads of up to 103% over the
baseline open (for n = 7), our equivalent in the Process
Firewall had a maximum overhead of only 2.3%. The over-
head of safe_open is because it needs to perform at least 4
additional system calls for each path component. This shows
how Process Firewall rules can powerfully extend the sys-
tem call API with arbitrary resource constraints, while still
maintaining performance. This also eliminates the need for
checks in code, and thus, races.

Removing Program Checks. We use the Apache web-
server to examine performance benefit in moving checks
out of the program into the system at a macro-level on
real-world programs. To protect against symbolic link fol-
lowing vulnerabilities, the option SymLinksIfOwnerMatch

constraints Apache to follow a symbolic link only if both the



0 2000 4000 6000 8000 10000

requests per second

c=1,n=1

c=1,n=3

c=1,n=5

c=1,n=9

c=10,n=1

c=10,n=3

c=10,n=5

c=10,n=9

c=200,n=1

c=200,n=3

c=200,n=5

c=200,n=9

co
n
cu

rr
e
n
t 

cl
ie

n
ts

 (
c)

, 
p
a
th

 l
e
n
g
th

 (
n
) PF Rules Program

Figure 5: Comparing performance of Apache’s SymLinksIfOwn-
erMatch option with Process Firewall rules as a function of path
length (n) and number of clients (c). We measured requests per
second for Apache 2.2.22 on a Dell Optiplex 845 serving a static
web page averaged over 30 runs for each parameter combination.

symbolic link and the target file it refers to are owned by the
same user. This reduces performance by forcing Apache to
perform additional lstat system calls on each component
of the pathname. Thus, the Apache documentation [2] rec-
ommends switching this option off for better performance.
Furthermore, the documentation notes that this option can
actually be circumvented through races.

Figure 5 compares the performance of these checks
against an equivalent Process Firewall rule enforcing
SymLinksIfOwnerMatch (R8 in Table 5). As both path
length and number of concurrent clients increase, we note
a performance improvement of Process Firewall rules over
program checks – for a path length of 1 (/index.html), we
noted a performance improvement of 3.02% for 200 concur-
rent clients; for path lengths 3, 5, and 9, it is 4.12%, 6.35%
and 8.36%, respectively. The Process Firewall rule is thus
both more efficient and secure.

Process Firewall Performance. We perform experi-
ments on a Process Firewall implemented for Linux kernel
2.6.35 on a Dell Optiplex 980 with 2GB of RAM. Table 7
documents our macrobenchmarks. We measure both the Pro-
cess Firewall with no rules (PF Base) and a rule base con-
sisting of a set of 1218 rules (PF Full) generated by setting a
lower threshold (100) for rule suggestion. Some benchmarks
perform a large number of system calls (Apache Build and
webserver benchmarks), while Bootup exercises a variety
of rules in different ways. Each macrobenchmark shows be-
tween 2 and 4% overhead.

Table 6 shows overhead of the Process Firewall per sys-
tem call. The microbenchmarks show no more than 0.51%
overhead with just the default allow rules enabled (BASE)
and less than 11% for any particular system call with our
full rule set and optimizations enabled.
6.3 Rule Generation
This section examines the challenge of producing rules for
the Process Firewall. The goal is generate rules automati-
cally that block attacks without introducing false positives.

Benchmark Mean ±95% CI (% overhead)
Without PF PF Base PF Full

Apache Build (s) 73.67 ±0.06 72.82 ±0.12 (0.2) 75.61 ±0.06 (4.0)
Boot (s) 14.49 ±0.10 14.51 ±0.2 (0.0) 14.82 ±0.1 (2.2)

Web1-L (ms) 0.946±0.001 0.947±0.001 (0.1) 0.967±0.002 (2.2)
Web1-T (Kb/s) 467.67 ±0.1 465.45 ±0.3 (0.5) 455.35 ±0.8 (2.5)

Web1000-L (ms) 0.963±0.002 0.967±0.005 (0.4) 0.992±0.012 (3.0)
Web1000-T (Kb/s) 459.15 ±0.1 455.14 ±0.7 (0.9) 444.04 ±1.2 (3.2)

Table 7: Benchmark overhead means are collected over 30 runs.
Web1-1000 indicates ApacheBench latency on a LAMP system
serving random database entries with 1 and 1000 concurrent clients
respectively (L is latency and T is throughput). PF Base has default
allow rules, and PF Full uses our full rule set.

Since several systems (e.g., systrace [34], AppArmor [30],
SELinux [1]) have used runtime analysis to automatically
produce rules, we explore its effectiveness for the Process
Firewall. In addition, we examine the ability and efficacy of
OS distributors to produce effective rulesets automatically.

6.3.1 Rule Generation Techniques
We explore producing rules from known vulnerabilities,
from runtime traces of program test suites, and from runtime
traces of the system deployment. We find that: (1) known
vulnerabilities can be blocked without incurring false posi-
tives; (2) for rules generated using three program test suites,
we observed no false positives but these rules create unnec-
essary false negatives; and (3) while generating rules from
runtime traces of program deployments reduces false neg-
atives and generates widely-applicable rules, we observed
that some false positives result. We examine causes for these
false positives and future work to address them.

First, we generate rules for each of the over 20 previously-
unknown vulnerabilities we found using our vulnerability
testing tool [41]. Our testing tool logs the process entrypoint
and the unsafe resource that led to the attack. We ran our
testing tool to generate log entries for two verified exploits
(E6, E7 in Table 4). We used the log entries to generate Pro-
cess Firewall rules (R3, R4 for E7 in Table 5) to block the
exploits and verified that they worked. The advantage of us-
ing known vulnerabilities to generate Process Firewall rules
is that the combination of unsafe resource and entrypoint is
known to require defense to protect the program, so no false
positives are possible. We generalize the rules to deny access
to all unsafe resources (see Table 2) for the program entry-
point based on the type of vulnerability, using the SELinux
MAC policies of the program itself and system services (e.g.,
the untrusted search path rule R7 in Table 5 is generalized to
block all adversary-accessible resources). These policies are
essentially fixed, so as long as we have a conservative view
of what is unsafe these rules do not cause false positives.

To generate rules to block unknown vulnerabilities, we
explore rule generation from runtime traces using program
test suites. Many programs include test suites written by de-
velopers to exercise their programs’ functionality in a va-
riety of ways. For example, PHP has a set of almost 8000
tests that exercise various configurations. We generated Pro-
cess Firewall rules from runtime traces of the Apache, PHP,
and MySQL test suites and did not observe false positives



Syscall DISABLED BASE FULL CONCACHE LAZYCON EPTSPC
null 11.675 11.681 (0.05) 12.641 (8.27) 12.666 (8.48) 11.865 (1.62) 11.873 (1.69)
stat 12.545 12.609 (0.51) 26.403 (110.46) 23.207 (85.00) 21.981 (72.21) 13.872 (10.57)
read 11.767 11.805 (0.32) 15.332 (30.29) 14.823 (25.97) 13.704 (16.46) 11.982 (1.82)
write 11.763 11.794 (0.26) 13.602 (15.63) 13.096 (11.33) 12.123 (3.06) 11.975 (1.80)
fstat 11.826 11.134 (0.06) 15.529 (31.31) 14.897 (25.96) 13.719 (16.01) 12.106 (2.36)

open+close 24.632 24.722 (0.36) 44.54 (80.82) 39.789 (61.53) 37.511 (52.28) 26.113 (6.01)
fork+exit 104.326 104.392 (0.06) 112.371 (7.71) 110.918 (6.31) 106.303 (1.89) 104.959 (0.60)

fork+execve 664.010 667.050 (0.45) 903.714 (36.10) 861.571 (29.75) 818.142 (23.21) 670.589 (0.99)
fork+sh -c 1461.875 1465.375 (0.23) 1934.666 (32.34) 1856.120 (26.96) 1766.320 (20.80) 1475.475 (0.89)

Table 6: Microbenchmarks using lmbench. All results are in µs with percentage overhead in brackets. Standard deviation for all results was
less than 1% for all our measurements. 95% confidence intervals for the non-fork results was at maximum 0.003, whereas for the fork-related
results, the maximum was 0.3. Each column except the last incorporates optimizations of the previous column. DISABLED is the Process
Firewall totally disabled, BASE with only the default allow rule, FULL our full rule base without any optimizations, CONCACHE with
context caching optimization, LAZYCON with lazy context evaluation, and EPTSPC with entrypoint-specific rule chains.

Invocation High Low Both High Rules False
Threshold Only Only and Low Produced Positives

0 4570 664 0 5234 525
5 4436 508 290 2329 235

10 4384 482 368 1536 157
50 4257 480 497 490 28
100 4247 480 507 295 18
500 4233 480 521 64 4
1000 4230 480 524 34 1
1149 4229 480 525 30 0
5000 4229 480 525 11 0

Table 8: Classification of entrypoints against the number entrypoint
invocations (one invocation is one system call).

when enforcing these rule sets. However, test suites exer-
cise programs under multiple program environments – con-
figurations, command line arguments, and environment vari-
ables [22]. These environments may access resources that
are not relevant to the expected deployment, thus result-
ing in rules that cause false negatives. For example, the
Apache test suite exercises programs under configurations
that allow and disallow low-integrity user-defined configu-
ration files (.htaccess). If the expected deployment disal-
lows .htaccess, this rule may miss attacks where Apache
is somehow tricked into using these low-integrity files. Test
suites have other drawbacks – their quality is variable, and
they are not available for all programs.

To reduce the number of false negatives, we examine rule
generation using runtime traces from deployed program en-
vironments. However, using runtime traces may cause false
positives as a trace may not exercise all valid resource ac-
cesses by an entrypoint. We analyzed how entrypoints ac-
cessed resources over a two-week long runtime trace on an
Ubuntu 10.04 system with SELinux that had 5234 total en-
trypoints and 410,000 log entries. From Section 4.1, invari-
ant rules to prevent several resource access attacks can be
generated for those entrypoints that access only either high-
integrity (adversary-accessible) or low-integrity (adversary-
inaccessible) resources, but not both. To generate such rules,
we collected all resources accessed by each entrypoint in the
runtime trace. Depending on whether these resources were
only high-integrity, low-integrity, or both, the entrypoint was
classified as high, low, or both. From this classification, rules
were generated for entrypoints that were: (1) classified as ei-

ther high or low, and (2) invoked more than a threshold num-
ber of times. For this study, we defined any resource modifi-
able by processes running under the untrusted SELinux user
label user_t as low-integrity.

We now examine whether the runtime trace identifies
a threshold beyond which no false positives are observed.
False positives are caused when entrypoints are classified
as either high or low, but in reality access both. Table 8
shows how the classification of entrypoints evolved with
the number of invocations of that entrypoint in the trace.
The highest number of invocations at which an entrypoint
changed class from high or low to both was 1149. Thus, if
we used 1149 as the threshold for producing rules, then we
would not see any false positives for this particular runtime
trace. While only 30 entrypoints are invoked 1149 times
(or more) and are classified either high or low in this trace,
the corresponding rules apply in many cases (e.g., dynamic
linking, PHP File Inclusion, etc.). Rules (R1-R4) in Table 5
were all generated based on entrypoints that were invoked
more than 1149 times.

If rules are generated using a lower threshold, many more
entrypoints could be protected. To find causes for false pos-
itives at lower thresholds, we manually examined the 28 en-
trypoints that changed classification after more than 50 in-
vocations. First, 18 entrypoints were in libraries. These oc-
cur because libraries are called by a variety of programs
in different environments, which may use the libraries for
different purposes. Thus, these rules must be predicated on
the environment in which the library is used. The remain-
ing 10 were program entrypoints. Although these programs
were launched under the same environment every time, they
used inputs at runtime to produce names to access resources.
For example, an entrypoint in nautilus, a graphical file
browser, lists the files in a directory the user specifies in the
location bar. In our particular runtime trace, the user only
accessed high-integrity files in the first 50 invocations, and
later accessed a low-integrity directory. Thus, to guarantee
generation of rules without false positives, we need to un-
derstand how a program produces names used in resource
access system calls. We leave this for future work.



6.3.2 Rule Generation by OS Distributors
We envision that OS distributors will generate Process Fire-
wall rules and ship them to users in application packages. In
this section, we discuss how to automate rule generation and
whether the techniques above are useful for effective rule
generation by OS distributors.

We provide scripts to automatically generate rules from
Process Firewall logs (generated by the LOG target module).
Table 5 shows two rule templates (T1, T2) we use for rule
generation from known vulnerabilities. Template T1 con-
strains an entrypoint to access only a set of resources iden-
tified by their (SELinux) labels5. T2 creates rules to block
TOCTTOU attacks. Scripts fill in rule template fields using
corresponding logged values. To generate rules from known
vulnerabilities using these rule templates, we need the spe-
cific Process Firewall log entries for the vulnerable system
call and the type of the vulnerability. The type of vulnerabil-
ity determines the template, which we fill with logged data.

An important question is whether rules generated by OS
distributors are valid in deployed environments. Our insight
is that Process Firewall rules generated by OS distributors
are valid if programs are run in the same environment that
the OS distributors generate rules for. To find such programs,
we compared the launch inputs and application package files
across all program invocations. If every launch used the
same command line arguments and environment variables
and the package files were unmodified from installation6,
we concluded that the deployed environment was consistent
with the OS distribution’s package. Of the 318 programs and
scripts that were launched in our runtime trace, we found
that 232 were launched in the same environment as the
installed package each time. Based on our analysis above,
OS distributors could produce Process Firewall rules without
false positives for a majority of programs, where they would
only need to resolve 10 false positives (e.g., by testing the
programs more thoroughly). Alternatively, OS distributors
could produce less comprehensive rule sets using Linux test
suites or only block known vulnerabilities with little risk of
false positives.

7. Related Work
While no previous work has looked at the class of resource
access attacks in a unified manner, there exist previous sys-
tem and program defenses.

System-level defenses. System-level defenses have been
proposed for confinement and protection. Confinement us-
ing sandboxing [16, 21, 23, 34] cannot trust process con-
text to make authorization decisions, as malicious processes
could spoof such information. Some systems [37, 38] as-
sume “partially trusted” processes and use the process call

5 We could also have used the DAC label (owner and group) to identify
resources, but we chose SELinux as its labels are finer-grained
6 User-defined configuration files are also a sign that the environment may
differ across runs.

stack. However, they do not make use of system informa-
tion such as adversary accessibility in addition; this pre-
cludes them from defending against resource access attacks.
System-level defenses have also been proposed for protec-
tion against TOCTTOU attacks [5, 11, 17, 39, 44] and link
following attacks [8, 44]. However, system-level protection
is fundamentally limited because it does not consider pro-
gram context [7].

Program Defenses. Certain program API modifications
have been proposed to help programs convey constraints on
resource access to the OS depending on process context. De-
centralized Information Flow Control [26, 46] (DIFC) en-
ables programmers to limit the system resources available
in different process execution contexts through information
flow policies. Capability systems [27, 43] circumvent re-
source access through namespaces altogether by using di-
rect capabilities to resources. However, such defenses re-
quire programs to be customized and rewritten to system
deployments. The Process Firewall performs this customiza-
tion without requiring program modifications.

Programs restrict resource access attacks such as un-
trusted search paths, directory traversal and PHP file in-
clusion by filtering adversarial names (e.g., removing ../).
However, both locating all sources of adversarial input [40]
and proper input filtering of names [4] are hard problems,
in addition to being deployment-specific. The Process Fire-
wall solves these problems by using resource information to
block access, instead of trying to restrict names.

8. Conclusion
This paper introduced the Process Firewall, a system-wide
kernel protection mechanism that protects processes from a
variety of resource access attacks. Noting the complexity, in-
efficiency and incompleteness of current program defenses,
our insight is to use both system knowledge of resources and
adversary access, and program context to protect processes
from resource access attacks. To this end, we implemented
a Process Firewall prototype for the Linux kernel, utilizing
a variety of optimizations that resulted in overheads of less
than 4% system-wide for a variety of macrobenchmarks. In
addition, we found that it is more efficient to deploy resource
access defenses in the Process Firewall than in programs. Fi-
nally, we show that the Process Firewall is easy to use, as no
program changes or user configuration are required and rule
bases can be created from existing vulnerabilities and run-
time analysis to avoid false positives. These results show that
it is practical for the operating system to protect processes by
preventing a variety of resource access attacks system-wide.
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